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Fig. 1: We present Point Policy, a framework that unifies robot observations and actions with key points and enables learning robot policies
exclusively from human videos. Point Policy enables learning policies with improved generalization capabilities, including spatial generalization
(i.e. generalization to new locations), generalization to novel object instances, and robustness to background distractors.

Abstract—Building robotic agents capable of operating across
diverse environments and object types remains a significant
challenge, often requiring extensive data collection. This is
particularly restrictive in robotics, where each data point must
be physically executed in the real world. Consequently, there
is a critical need for alternative data sources for robotics and
frameworks that enable learning from such data. In this work,
we present Point Policy, a new method for learning robot policies
exclusively from offline human demonstration videos and without
any teleoperation data. Point Policy leverages state-of-the-art
vision models and policy architectures to translate human hand
poses into robot poses while capturing object states through
semantically meaningful key points. This approach yields a
morphology-agnostic representation that facilitates effective policy
learning. Our experiments on 8 real-world tasks demonstrate
an overall 75% absolute improvement over prior works when
evaluated in identical settings as training. Further, Point Policy
exhibits a 74% gain across tasks for novel object instances and
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is robust to significant background clutter. Videos of the robot
are best viewed at point-policy.github.io.

I. INTRODUCTION

Recent years have witnessed remarkable advancements in
computer vision (CV) and natural language processing (NLP),
resulting in models capable of complex reasoning [2, 67, 78],
generating photorealistic images [7, 70] and videos [49],
and even writing code [15]. A driving force behind these
breakthroughs has been the abundance of data scraped from
the internet. In contrast, robotics has yet to experience a similar
revolution, with most robots still confined to controlled or
structured environments. While CV and NLP can readily take
advantage of large-scale datasets from the internet, robotics is
inherently interactive and requires physical engagement with
the world for data acquisition. This makes collecting robot
data significantly more challenging, both in terms of time and

https://point-policy.github.io/
https://point-policy.github.io/


financial resources.
A prominent approach for training robot policies has been the

collection of extensive datasets, often through contracted tele-
operators [54, 12, 72], followed by training deep networks on
these datasets [72, 19, 61, 41]. While effective, these methods
tend to require months or even years of human effort [12, 41]
and still result in datasets orders of magnitude smaller than
those used in CV and NLP [61, 41]. A potential solution to
this data scarcity in robotics is to tap into the vast repository
of human videos available online, showcasing individuals
performing a wide range of tasks in diverse scenarios.

The primary challenge in learning robot policies from human
videos lies in addressing the morphology gap between robots
and the human body [4, 25, 10, 9, 68]. Two notable trends have
emerged in efforts to utilize human data for learning robot poli-
cies: (1) first learning visual representations or coarse policies
from human datasets and then finetuning them for downstream
learning on robot datasets [10, 9, 68, 58, 11, 82, 52, 53, 38],
and (2) using human videos to compute rewards for autonomous
policy learning through reinforcement learning [87, 4, 25, 43].
While the former requires a substantial amount of robot demon-
strations to learn policies for downstream tasks, the latter often
requires large amounts of online robot interactions in the real
world, which can be time-consuming and potentially unsafe.

In this work, we introduce Point Policy, a new technique
to learn robot policies solely from offline human data without
requiring robot interactions during training. Our key observation
in building Point Policy is that both humans and robots occupy
the same 3D space in the world, which can be tied together
using key points derived from state-of-the-art vision models.

Concretely, Point Policy works in three steps. First, given
a dataset of human videos, a motion track of key points on
the human hand and the object is computed using hand pose
detectors [51, 64] and minimal human annotation of one frame
per task. These key points are computed from two camera views,
which allows for projection in 3D using point triangulation.
Second, a transformer-based policy [28] is trained to predict
future robot points given the set of key points derived in the
previous stage. Third, during inference, the predicted future
robot points in 3D space are used to backtrack the 6 DOF
pose of the robot’s end-effector using constraints from rigid-
body geometry. The gripper state of the robot end effector is
predicted as an additional token. The predicted end-effector
pose and gripper state are then executed on the robot at 6 Hz.

We demonstrate the effectiveness of Point Policy through
experiments on 8 real-world tasks on a Franka robot. Our main
findings are summarized below:
1) Point Policy exhibits an absolute improvement of 75% over

prior state-of-the-art policy learning algorithms across 8 real
world tasks when evaluated in identical settings as training.
(Section IV-D).

2) Point Policy generalizes to novel object instances, exhibited
a 74% absolute improvement over prior work on a held-out
set of objects unseen in the training data. (Section IV-E).

3) Policies trained with Point Policy are robust to the presence
of background distractors, performing at par with scenes

without clutter (Section IV-F).
4) We provide an analysis of co-training Point Policy with tele-

operated robot data (Section G2) and study the importance
of several design choices in Point Policy (Section IV-F1).

All of our datasets, and training and evaluation code have
been made publicly available. Videos of our trained policies
can be seen here: point-policy.github.io.

II. RELATED WORKS

1) Imitation Learning: Imitation Learning (IL) [33] refers to
training policies with expert demonstrations, without requiring
a predefined reward function. In the context of reinforcement
learning (RL), this is often referred to as inverse RL [59, 1],
where the reward function is derived from the demonstrations
and used to train a policy [46, 26, 27, 30, 57]. While these
methods reduce the need for extensive human demonstrations,
they still suffer from significant sample inefficiency. As a
result of this inefficiency in deploying RL policies in the real
world, behavior cloning (BC) [66, 77, 71, 69] has become
increasingly popular in robotics. Recent advances in BC have
demonstrated success in learning policies for both long-horizon
tasks [13, 55, 74] and multi-task scenarios [28, 8, 62, 10, 9].
However, most of these approaches rely on image-based
representations [88, 28, 14, 8, 62, 35], which limits their
ability to generalize to new objects and function effectively
outside of controlled lab environments. In this work, we
propose Point Policy, which attempts to address this reliance
on image representations by directly using key points as an
input to the policy instead of raw images. Through extensive
experiments, we observe that such an abstraction helps learn
robust policies that generalize across varying scenarios.

2) Object-centric Representation Learning: Object-centric
representation learning aims to create structured representations
for individual components within a scene, rather than treating
the scene as a whole. Common techniques in this area include
segmenting scenes into bounding boxes [16, 55, 18, 20, 93] and
estimating object poses [79, 80]. While bounding boxes show
promise, they share similar limitations with non object-centric
image-based models, such as overfitting to specific object
instances. Pose estimation, although less prone to overfitting,
requires separate models for each object in a task. Another
popular method involves using point clouds [92, 5], but their
high dimensionality necessitates specialized models, making
it difficult to accurately capture spatial relationships. Lately,
several works have resorted to adopting key points [45, 36, 32,
10, 9, 68, 21, 6, 86, 47, 81, 85, 83] for policy learning due
to their generalization ability. Further, key points also allow
the direct injection of human priors into the policy learning
pipeline [10, 9, 68] as opposed to learning representations from
human videos followed by downstream learning on robot tele-
operated data [58, 11, 82, 52, 53, 38]. In this work, we leverage
key points as a unified observation and action space to enable
learning generalizable policies exclusively from human videos.

3) Human-to-Robot Transfer for Policy Learning: There
have been several attempts at learning robot policies from hu-
man videos. Some works first learn visual representations from
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large-scale human video datasets and learn a downstream policy
on these representations using limited amounts of robot data [58,
11, 82, 52, 53, 38]. Another line of work learns coarse policies
from human videos, using key points [10] and generative mod-
eling [9], which are then improved using downstream learning
on robot data. Recently proposed MT-π [68] alleviates the need
for downstream learning by co-training a key point policy with
human and robot data. A caveat in all these works is that despite
having access to abundant human demonstrations, there is a
need to collect robot data to achieve a highly performant policy.
A recently emerging line of work [63] attempts to do away with
this need for robot data by doing in-context learning with state-
of-the-art vision-language models (VLMs) [67, 2, 78]. However,
owing to the large compute times of VLMs, these policies are
required to be deployed open-loop and hence, are not reactive
to changes in the scene. In this work, we propose Point Policy,
a new framework that learns generalizable policies from human
videos, does not require robot demonstrations or online robot
interactions, and can be executed in a closed-loop fashion.

III. POINT POLICY

Point Policy seeks to learn generalizable policies exclusively
from human videos that are robust to significant environmental
perturbations and applicable to diverse object locations and
types. An overview of our method is presented in Figure 3.
Before diving into the details, we first present some of the key
assumptions needed to run Point Policy.

Assumptions: (1) The pose of the human hand in the first
frame is known for each task. This is needed to initialize the
robot and set that pose as the base frame of operation. This
assumption can be relaxed with a hand-pose estimator [64],
which we do not investigate in this work. (2) We operate in
a calibrated scene with the camera’s intrinsic and extrinsic
matrices, and the transforms between each camera and the
robot base known. In practice this is a one-time process that
takes under 5 minutes when the robot system is first installed.

A. Point-based Scene Representation

Our method begins by collecting human demonstrations,
which are then converted to a point-based representation
amenable to policy learning.

1) Human-to-Robot Pose Transfer: For each time step t of
a human video, we first extract image key points on the human
hand pth using the MediaPipe [51] hand pose detector, focusing
specifically on the index finger and thumb. The corresponding
hand key points pth obtained from two camera views are used
to compute the 3D world coordinates Pt

h of the human hand
through point triangulation. We use point triangulation for 3D
projection due to its higher accuracy as compared to sensor
depth from the camera (Section IV-F1). The robot position
Rt

pos is computed as the midpoint between the tips of the
index finger and thumb in Pt

h. The robot orientation Rt
ori is

computed as

∆Rt
ori = T (P0

h,Pt
h)

Rt
ori = ∆Rt

ori · R0
ori

(1)

where T computes the rigid transform between hand key
points on the first frame of the video, P0

h, and Pt
h. The robot

end effector pose is then represented at T t
r ← {Rt

pos,Rt
ori}.

The robot’s gripper state Rg is computed using the distance
between the tip of the index finger and thumb. The gripper is
considered closed when the distance is less than 7cm, otherwise
open. Finally, given the robot pose T t

r , we define a set of N
rigid transformations T about the computed robot pose and
compute robot key points Pt

r such that

(Pt
r)

i = T t
r · T i, ∀i ∈ {1, ..., N} (2)

This process has been demonstrated in Figure 3. This
approach effectively bridges the morphological gap between
human hands and robot manipulators, enabling accurate transfer
of demonstrated actions to a robotic framework.

2) Environment state through point priors: To obtain key
points on task-relevant objects in the scene, we adopt the
method proposed by P3PO [45]. Initially, a user randomly
selects one demonstration from a dataset of human videos
and annotates semantically meaningful object points on the
first frame that are pertinent to the task being performed.
This annotation process is quick, taking only a few seconds.
The user-annotated points serve as priors for subsequent data
generation. Using an off-the-shelf semantic correspondence
model, DIFT [76], we transfer the annotated points from the
first frame to the corresponding locations in the first frames
of all other demonstrations within the dataset. This approach
allows us to initialize key points throughout the data set with
minimal additional human effort.

For each demonstration, we then employ Co-Tracker [37],
an off-the-shelf point tracker, to automatically track these
initialized key points throughout the entire trajectory. By
leveraging existing vision models for correspondence and
tracking, we efficiently compute object key points for every
frame in the dataset while requiring user input for only a single
frame. This process, illustrated in Figure 4, capitalizes on
large-scale pre-training of vision models to generalize across
new object instances and scenes without necessitating further
training. We prefer point tracking over correspondence at
each frame due to its faster inference speed and its capability
to handle occlusions by continuing to track points. The
corresponding object points from two camera views are lifted
to 3D world coordinates using point triangulation to obtain the
3D object key points Po. During inference, DIFT is employed
to identify corresponding object key points on the first frame,
followed by Co-Tracker tracking these points during execution.
It is important to note that Point Policy utilizes multiple camera
views only for point triangulation, with the policy being
learned on 3D key points grounded in the robot’s base frame.

B. Policy Learning

For policy learning, we use BAKU [28]. Instead of providing
raw images as input, we provide the robot points Pr and object
points Po grounded in the robot’s base frame as input to the
policy. A history of observations for each key point is flattened
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Fig. 3: Overview of the Point Policy framework. (a) Point Policy leverages state-of-the-art vision models and policy architectures to translate
human hand poses into robot poses while capturing object states through sparse single-frame annotations. (b) The derived key points are
fed into a transformer policy to predict the 3D future point tracks from which the robot actions are computed through rigid-body geometry
constraints. (c) Finally, the computed action is executed on the robot using end-effector position control at a 6Hz frequency.

into a single vector which is then encoded using a multilayer
perceptron (MLP) encoder. The encoded representations are
fed as separate tokens along with a gripper token into a
BAKU [28] transformer policy, which predicts the future
tracks for each robot point P̂r and the robot gripper state
Ĝr using a deterministic action head. Mathematically, this can
be represented as

Ot−H:t = {Pt−H:t
r , Pt−H:t

o }
P̂t+1
r , Gt+1

r = π(·| Ot−H:t)
(3)

where H is the history length and π is the learned policy.
Following prior works in policy learning [89, 14], we use
action chunking with exponential temporal averaging to ensure
temporal smoothness of the predicted point tracks. The trans-
former is non-causal in this scenario and hence the training
loss is only applied to the robot point tracks.

C. Backtrack Robot Actions from Predicted Key Points

The predicted robot points P̂r are mapped back to the
robot pose using constraints from rigid-body geometry. We
first consider the key point corresponding to the robot’s wrist
P̂wrist
r as the robot position R̂pos. The robot orientation R̂ori

is computed using Eq. 1 considering R0
ori is fixed and known.

Finally, the robot action Ar is defined as

Âr = (R̂pos, R̂ori, Ĝr) (4)

Finally, the action Âr is executed on the robot using end-
effector position control at a 6Hz frequency.

IV. EXPERIMENTS

Our experiments are designed to answer the following
questions: (1) How well does Point Policy work for policy
learning? (2) How well does Point Policy work for novel object
instances? (3) Can Point Policy handle background distractors?
More analysis has been included in Appendix G.

A. Experimental Setup

Our experiments utilize a Franka Research 3 robot equipped
with a Franka Hand gripper, operating in a real-world
environment. We use the Deoxys [93] real-time controller for
controlling the robot. The policies utilize RGB and RGB-D
images captured using Intel RealSense D435 cameras from
two third-person camera views. The action space encompasses
the robot’s end effector pose and gripper state. We collect a
total of 190 human demonstrations across 8 real-world tasks,
featuring diverse object positions and types. Additionally, for
studying the effect of co-training with robot data (Section G2),
we collect a total of 100 robot demonstrations for 4 tasks
(Section G2) using a VR-based teleoperation framework [34].
All demonstrations are recorded at a 20Hz frequency and
subsequently subsampled to approximately 6Hz. For methods
that directly predict robot actions, we employ absolute actions
during training, with orientation represented using a 6D



TABLE I: Policy performance of Point Policy on in-domain object instances on 8 real-world tasks.

Method Close
drawer

Put bread
on plate

Fold
towel

Close
oven

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

BC [28] 0/10 0/20 0/10 0/10 0/10 0/30 1/10 0/20
BC w/ Depth 0/10 0/20 0/10 0/10 0/10 0/30 0/10 0/20
MT-π [68] 2/10 2/20 0/10 4/10 0/10 8/30 0/10 0/20
P3-PO [45] 0/10 0/20 0/10 0/10 0/10 0/30 0/10 0/20
Point Policy (Ours) 10/10 19/20 9/10 9/10 9/10 26/30 8/10 16/20

TABLE II: Policy performance of Point Policy on novel object instances on 6 real-world tasks.

Method Put bread
on plate

Fold
towel

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

BC [28] 0/20 0/20 0/10 0/30 0/10 0/20
BC w/ Depth 0/20 0/20 0/20 0/30 0/10 0/20
MT-π [68] 1/20 0/20 0/10 0/30 0/10 0/20
P3-PO [45] 0/20 0/20 0/10 0/30 0/10 0/20
Point Policy (Ours) 18/20 15/20 4/10 27/30 9/10 9/20

rotation representation [91]. This representation is chosen for
its continuity and fast convergence properties. The learned
policies are deployed at a 6Hz frequency during execution.
A description of the tasks has been provided in Appendix G.

B. Baselines

We compare Point Policy with 4 baselines - behavior cloning
(BC) [28] with RGB and RGB-D images, Motion Tracks [68],
and P3-PO [45]. We describe each method below.

a) Behavior Cloning (BC) [28]: This method performs
behavior cloning (BC) using the BAKU policy learning
architecture [28], which takes RGB images of the human hand
as input and predicts the extracted robot actions as output.

b) Behavior Cloning (BC) with Depth: This is similar to
BC but uses both RGB and depth images as input.

c) Motion Track Policy (MT-π) [68]: Given an image of
the scene and robot key points on the image, MT-π predicts the
future 2D robot point tracks to complete a task. This approach
generates future 2D point tracks for robot points across multiple
views, which are then triangulated to obtain 3D points on the
robot. These 3D points are subsequently converted to the robot’s
absolute pose (similar to our proposed method) and treated as
the robot’s action. Implementation details for MT-π have been
provided in Appendix F.

d) P3-PO [45]: This method utilizes image points rep-
resenting both the robot and objects of interest, projecting
them into 3D space using camera depth information. These
3D points serve as input to a transformer policy [28], which
predicts robot actions. P3PO’s 3D point representations, akin to
those in Point Policy, enable spatial generalization, adaptability
to novel object instances, and robustness to background clutter.

C. Considerations for policy learning

Point Policy and P3PO use a point-based representation
obtained from 640× 480 images. For correspondence, we use
DIFT [76] using the first layer of the hundredth diffusion time
step with an ensemble size of 8. Point tracking is performed us-
ing a modified version of Co-Tracker [37] that enables tracking

one frame at a time, rather than chunks. Point Policy, MT-π, and
P3PO use a history of 10 point observations, while the image-
based baselines do not use history [28]. BC (RGB), BC (RGB-
D), and MT-π are trained on images of size 256 × 256. All
methods predict an action chunk [89] of size 20 (∼ 3 seconds).

D. How well does Point Policy work for policy learning?

We evaluate Point Policy in an in-domain setting, using the
same objects seen during training. The evaluation consists of
10 trials per object for each task, resulting in a variable total
number of trials per task. The results of this evaluation are
summarized in Table I. Baselines that rely on RGB images
as inputs (RGB, RGB-D, MT-π) perform poorly when trained
exclusively on human hand videos. This is largely due to the
significant visual differences between the human hand and the
robot manipulator. While appearance-agnostic, P3-PO struggles
due to noisy depth data from the camera. Point Policy achieves
an average success rate of 88% across all tasks, outperforming
the strongest baseline MT-π by 75%. Overall, these results
demonstrate that Point Policy’s ability to effectively address
challenges related to visual differences and noisy depth data,
achieving state-of-the-art performance in an in-domain setting.

E. How well does Point Policy work for novel object instances?

Table II compares the performance of Point Policy when
evaluated on new object instances unseen in the training
data. We perform this comparison on a subset of our tasks.
We observe that Point Policy achieves an average success
rate of 74% across all tasks, outperforming the strongest
baseline by 73%. Compared to P3PO[45], where each task
is trained with a variety of object sizes, most of our tasks
are trained on a single object instance. Despite this limited
diversity in the training data, Point Policy demonstrates robust
generalization capabilities. Figure 6 depicts rollouts of Point
Policy for novel object instances. For a visual reference of
the novel object instances used for each task, please refer
to Appendix G3. These results affirm Point Policy’s strong



TABLE III: Policy performance of Point Policy with background distractors on both in-domain and novel object instances.

Background distractors Put bread on plate Sweep broom Put bottle on rack

In-domain Novel object In-domain Novel object In-domain Novel object

✗ 19/20 18/20 9/10 4/10 26/30 27/30
✓ 18/20 18/20 9/10 2/10 23/30 23/30

TABLE IV: The effect of triangulated depth on P3PO and Point
Policy.

Method Put bread
on plate

Sweep
broom

Put bottle
on rack

P3PO 0/20 0/10 0/30
P3PO + Triangulated Depth 17/20 4/10 23/30
Point Policy 19/20 9/10 26/30
Point Policy - Triangulated Depth 0/20 0/10 0/30

generalization capabilities, making it suitable for real-world
applications where encountering unseen objects is common.

F. Can Point Policy handle background distractors?

We evaluate the robustness of Point Policy in the presence
of background clutter, as shown in Table III. This study is
conducted on three tasks - put bread on plate, sweep broom,
and put bottle on rack. Trials are conducted using both in-
domain and novel object instances. Examples of the distractors
used are illustrated in Figure 3, with Figure 6 depicting rollouts
of Point Policy in the presence of background distractors.
We observe that Point Policy is robust to background
clutter, exhibiting either comparable performance or only
minimal degradation in the presence of background distractors.
This robustness can be attributed to Point Policy’s use of
point-based representations, which are decoupled from raw
pixel values. By focusing on semantically meaningful points
rather than image-level features, Point Policy enables policies
that are resilient to environmental perturbations.

1) What design choices matter for human-to-robot learning?:
This section examines the impact of key design decisions on
learning from human videos.

a) Depth Sensing: In Point Policy, we utilize point
triangulation from two camera views to obtain 3D key points,
rather than relying on depth maps from the camera. We
hypothesize that noisy camera depth leads to imprecise 3D
key points, resulting in unreliable actions. Table IV tests this
hypothesis on 4 real-world tasks by comparing the performance
of P3PO and Point Policy with and without triangulated depth.
We observe that adding triangulated depth to P3PO improves its
performance from 0% to 72%. Further, removing triangulated
depth from Point Policy reduces its performance from 90%
to 0%. These results emphasize the importance of obtaining
accurate 3D key points from human hands when learning robot
policies from human videos. Appendix G4 includes an illus-
tration of imprecise actions resulting from noisy sensor depth.

b) Significance of Object Points: While Point Policy uses
robot and object key points as input to the policy, MT-π [68],
the best-performing baseline in Table I, only uses robot key
points and obtains information about the rest of the scene

TABLE V: Importance of object point inputs for policy learning.

Method Close
drawer

Put bread
on plate

Fold
towel

Make bottle
upright

MT-π 2/10 2/20 0/10 0/20
MT-π + object points 8/10 1/20 6/10 2/20
Point Policy 10/10 19/20 9/10 16/20

through an input image. We hypothesize that using object points
can improve policy learning performance, especially when there
is a morphology gap between data collection and inference.
Table V tests this hypothesis by providing object points in
addition to the robot points already passed as input into MT-π.
We observe that adding object points improves the performance
of MT-π on select tasks(comprehensive results on all tasks
included in Appendix G5), suggesting that including object
points in the input offers a potential advantage. Nevertheless,
Point Policy outperforms both methods by 68% across all tasks,
emphasizing the efficacy of predicting 3D key points rather
than 2D key points in image space.

V. CONCLUSION AND LIMITATIONS

In this work, we presented Point Policy, a framework that
enables learning robot policies exclusively from human videos,
does not require real-world online interactions, and exhibits
generalization to spatial variations, new object instances, and
robustness to background clutter.

Limitations: We recognize a few limitations in this work:
(1) Point Policy’s reliance on existing vision models makes it
susceptible to their failures. For instance, failures in hand
pose detection or point tracking under occlusion have a
detrimental effect on performance. However, with continued
advances in computer vision, we believe that frameworks such
as Point Policy will become stronger over time. (2) Point-
based abstractions enhance generalization capabilities, but
sacrifice valuable scene context information, which is crucial
for navigating through cluttered or obstacle-rich environments.
Future research focusing on developing algorithms that preserve
sparse contextual cues in addition to the point abstractions
in Point Policy might help address this. (3) While all our
experiments are from a fixed third-person camera view, a large
portion of human task videos on the internet are from an
egocentric view [23, 50]. Extending Point Policy to egocentric
camera views can help us utilize these vast repositories of
human videos readily available on the internet.
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APPENDIX

A. Background

B. Imitation learning

The goal of imitation learning is to learn a behavior
policy πb given access to either the expert policy πe or
trajectories derived from the expert policy τe. This work
operates in the setting where the agent only has access to
observation-based trajectories, i.e. τe ≡ {(ot, at)Tt=0}Nn=0. Here
N and T denote the number of demonstrations and episode
timesteps respectively. We choose this specific setting since
obtaining observations and actions from expert or near-expert
demonstrators is feasible in real-world settings [89, 34] and
falls in line with recent work in this area [28, 44, 89, 14, 75].

C. Behavior Cloning

Behavior Cloning (BC) [65, 73] corresponds to solving the
maximum likelihood problem shown in Eq. 5. Here T e refers
to expert demonstrations. When parameterized by a normal
distribution with fixed variance, the objective can be framed
as a regression problem where, given observations oe, πBC

needs to output ae.

LBC = E(oe,ae)∼T e∥ae − πBC(oe)∥2 (5)

After training, it enables πBC to mimic the actions corre-
sponding to the observations seen in the demonstrations.

1) Semantic Correspondence: Finding corresponding points
across multiple images of the same scene is a well-established
problem in computer vision [48, 94]. Correspondence is
essential for solving a range of larger challenges, including
3D reconstruction [56, 40], motion tracking [37, 29, 90, 17],
image registration [94], and object recognition [42]. In contrast,
semantic correspondence focuses on matching points between a
source image and an image of a different scene (e.g., identifying
the left eye of a cat in relation to the left eye of a dog).
Traditional correspondence methods [94, 48] often struggle with
semantic correspondence due to the substantial differences in
features between the images. Recent advancements in semantic
correspondence utilize deep learning and dense correspondence
techniques to enhance robustness [22, 31, 24] across variations
in background, lighting, and camera perspectives. In this
work, we adopt a diffusion-based point correspondence model,
DIFT [76], to establish correspondences between a reference
and an observed image, which is illustrated in Figure 4.

2) Point Tracking: Point tracking across videos is a problem
in computer vision, where a set of reference points are given in
the first frame of the video, and the task is to track these points
across multiple frames of the video sequence. Point tracking
has proven crucial for many applications, including motion
analysis [3], object tracking [84], and visual odometry [60]. The
goal is to establish reliable correspondences between points in
one frame and their counterparts in subsequent frames, despite
challenges such as changes in illumination, occlusions, and
camera motion. While traditional point tracking methods rely
on detecting local features in images, more recent advancements
leverage deep learning and dense correspondence methods to

Human Annotation Corresponding points

Different position New object instance Background clutter

Fig. 4: Results of the correspondence model when used for the put
bottle on rack and sweep broom tasks. On the left is a frame with
human annotations for the object points. On the right, we show that
semantic correspondence can identify the same points across different
positions, new object instances, and background clutter.

improve robustness and accuracy [37, 29, 90]. In this work, we
use Co-Tracker [37] to track a set of reference points defined
in the first frame of a robot’s trajectory. These points tracked
through the entire trajectory are then used to train generalizable
robot policies for the real world.

D. Algorithmic Details

1) Point Triangulation: Point triangulation is a fundamental
technique in computer vision used to reconstruct 3D points from
their 2D projections in multiple images. Given n cameras with
known projection matrices P1, P2, ..., Pn and corresponding
2D image points x1, x2, ..., xn, the goal is to find the 3D point
X that best explains these observations.

The projection of X onto each image is given by:

xi ∼ PiX

where ∼ denotes equality up to scale.
One common approach is the Direct Linear Transform (DLT)

method:
1) For each view i, we can form two linear equations:

xi(p
3
i ·X)− (p1i ·X) = 0

yi(p
3
i ·X)− (p2i ·X) = 0

where pji is the j-th row of Pi.
2) Combining equations from all views, we get a system

AX = 0.
3) The solution is the unit vector corresponding to the

smallest singular value of A, found via Singular Value
Decomposition (SVD).

For optimal triangulation, we aim to minimize the geometric
reprojection error.

E. Hyperparameters

The complete list of hyperparameters is provided in Table VI.
Details about the number of demonstrations for each task has
been included in Section G1, and summarized in Table VII.
All the models have been trained using a single NVIDIA RTX
A4000 GPU.



TABLE VI: List of hyperparameters.

Parameter Value

Learning rate 1e−4

Image size 256× 256 (for BC, BC w/ Depth, MT-π)

Batch size 64

Optimizer Adam

Number of training steps 100000

Transformer architecture minGPT [39] (for BC, BC w/ Depth, P3PO, Point Policy)

Diffusion Transformer [10] (for MT-π)

Hidden dim 256

Observation history length 1 (for BC, BC w/ Depth)

10 (for MT-π, P3PO, Point Policy)

Action head MLP

Action chunk length 20

TABLE VII: Number of demonstrations.

Task Number of object instances Total number of demonstrations

Close drawer 1 20

Put bread on plate 1 30

Fold towel 1 20

Close oven 1 20

Sweep broom 1 20

Put bottle on rack 2 30

Put bowl in oven 1 20

Make bottle upright 2 30

F. Implementation Details for MT-π

Since the official implementation of MT-π is not yet public
available, we adopt the Diffusion Transformer (DiT) based
implementation of a 2D point track prediction model proposed
by Bharadhwaj et al. [10]. We modify the architecture such
that given a single image observation and robot motion tracks
on the image, the model predicts future tracks of the robot
points. These robot tracks are then converted to 3D using
corresponding tracks for two camera views. The robot action
is then computed from the 3D robot tracks using the same
rigid-body geometry constraints as Point Policy (described in
Section III-C). MT-π proposes the use of a key point retargeting
network in order to convert the human hand and robot key
points to the same space. Since we already convert the human
hand key points to the corresponding robot points for Point
Policy, we directly use these converted robot points instead of
learning a separate keypoint retargeting network.

To ensure the correctness of our implementation, we evaluate
MT-π in a setting identical to the one described in their paper.
We conduct this evaluation on the put bread on plate task. We
use 30 robot teleoperated demonstrations in addition to the

human demonstrations, resulting in a total of 60 demonstrations.
We observed a performance of 18/20, thus, confirming the
correctness of the implementation.

G. Experiments

1) Task Descriptions: We experiment with manipulation
tasks with significant variability in object position, type, and
background context. Figure 5 depicts rollouts for all of our
tasks. For each task, we collect data across various object sizes
and appearances. During evaluations, we add novel object
instances that are unseen during training. The variations in
positions and object instances for selected tasks are depicted
in Figure 7 and Figure 8. We provide a brief description of
each task below.

a) Close drawer: The robot arm is tasked with pushing
close a drawer placed on the table. The position of the drawer
varies for each evaluation. We collect 20 demonstrations for a
single drawer and run evaluations on the same drawer.

b) Put bread on plate: The robot arm picks up a piece
of bread from the table and places it on a plate. The positions
of the bread and the plate are varied for each evaluation. We



TABLE VIII: Policy performance of Point Policy with teleoperated
robot data on in-domain object instaces.

Demonstrations Put bread
on plate

Fold
towel

Sweep
broom

Make bottle
upright

Human 19/20 9/10 9/10 16/20
Robot 18/20 9/10 4/10 12/20

Human + Robot 20/20 9/10 8/10 8/20

collect 30 demonstrations for the task of a single bread-plate
pair. During evaluations, we introduce two new plates.

c) Fold towel: The robot arm picks up a towel placed on
the table from a corner and folds it. The position of the towel
varies for each evaluation. We collect 20 demonstrations for a
single towel. During evaluations, we introduce two new towels.

d) Close oven: The robot arm is tasked with closing the
door of an oven. The position of the oven varies for each
evaluation. We collect 20 demonstrations for the task on a
single oven and run evaluations on the same oven.

e) Sweep broom: The robot arm picks up a broom and
sweeps the table. The position and orientation of the broom are
varied across evaluations. We collect 20 demonstrations for a
single broom. During evaluations, we introduce a new broom.

f) Put bottle on rack: The robot arm picks up a bottle
from the table and places it on the lower level of a kitchen
rack. The position of the bottle is varied for each evaluation.
We collect 15 demonstrations for 2 different bottles, resulting
in a total of 30 demonstrations for the task. During evaluations,
we introduce three new bottles.

g) Put bowl in oven: The robot arm picks up a bowl from
the table and places it inside an oven. The position of the bowl
varies for each evaluation. We collect 20 demonstrations for
the task with a single bowl. During evaluations, we introduce
a new bowl.

h) Make bottle upright: The robot arm pick up a bottle
from the table and places it in an upright position. The
position of the bottle varies for each evaluation. We collect 15
demonstrations for 2 different bottles, resulting in a total of 30
demonstrations for the task. During evaluations, we introduce
two new bottles.

2) Can Point Policy be improved with robot demonstrations?:
Table VIII investigates whether Point Policy’s performance can
be enhanced through co-training with teleoperated robot data,
collected using a VR-based teleoperation framework [34]. We
conduct this study on four tasks - put bread on plate, fold
towel, sweep broom, and make bottle upright. For each task,
we collect an equal number of robot demonstrations as human
demonstrations, resulting in 30, 20, 20, and 30 demonstrations
respectively. Interestingly, our findings reveal that for tasks
involving complex motions, such as sweep broom and make
bottle upright, policies trained solely on robot data perform
poorly with the same amount of data as compared to those
trained exclusively on human data. This drop in performance
stems from the complex motions in these tasks making it harder
to collect robot data using VR teleoperation, resulting in noisy
demos. These results highlight an important consideration:
humans and robots may execute the same task in different

ways. Consequently, co-training with both human and robot
data requires the development of algorithms capable of dealing
with these differences effectively.

3) Illustration of Spatial Generalization and Novel Object
Instances: Figure 7 and Figure 8 illustrate the variations in
object positions and novel object instances used for each task,
respectively.

4) Illustration of Depth Discrepancy: Figure 9 provides an
illustration of the discrepancy in actions obtained from sensor
depth and triangulated depth for the task of putting a bottle on
the rack. We observe that the noise in sensor depth leads to
noise in robot points which is turn results in unreliable actions.

5) Significance of Object Points: Table IX and Table X study
the performance of MT-π with and without object points and
Point Policy across all of our tasks. We observe that MT-π with
object points outperforms MT-π on select tasks, suggesting that
including object points in the input offers a potential advantage.



Close drawer Put bread on a plate

Close ovenFold towel

Sweep with broom Put bottle on rack

Put bowl in oven Make bottle upright

Fig. 5: Real-world rollouts showing Point Policy’s ability on in-domain objects across 8 real-world tasks.

TABLE IX: In-domain policy performance

Method Close
drawer

Put bread
on plate

Fold
towel

Close
oven

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

MT-π [68] 2/10 2/20 0/10 4/10 0/10 8/30 0/10 0/20
MT-π + object points 1/20 6/10 1/20 4/10 0/10 0/10 2/20 8/10
Point Policy (Ours) 10/10 19/20 9/10 9/10 9/10 26/30 8/10 16/20

TABLE X: Policy performance on novel object instances

Method Put bread
on plate

Fold
towel

Sweep
broom

Put bottle
on rack

Put bowl
in oven

Make bottle
upright

MT-π [68] 1/20 0/20 0/10 0/30 0/10 0/20
MT-π + object points 2/20 0/20 0/20 1/10 0/10 1/20
Point Policy (Ours) 18/20 15/20 4/10 27/30 9/10 9/20



Novel Object Instances Background Distractors

Human Robot execution Human Robot execution

Fold towel Put bread on plate

Make bottle upright

Sweep with broomPut bowl in oven

Put bottle on rack

Fig. 6: Real-world rollouts showing that Point Policy generalizes to novel object instances and is robust to background distractors.

Put bottle on rack

Fold Towel

Sweep with broom Put bowl in oven

Close oven

Make bottle upright

Put bread on plateClose Drawer

Fig. 7: Illustration of spatial variation used in our experiments.



Fold Towel Sweep with broom

Put bottle on rack Put bowl in oven

Put bread on plate

Make bottle upright

Fig. 8: Illustration of objects used in our experiments. For each task, on the left are in-domain objects while on the right are novel objects
used in our generalization experiments.
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Fig. 9: Illustration of discrepancy in actions obtained from sensor depth and triangulated depth for the task of putting a bottle on the rack.
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