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Abstract—Reasoning over long sequences of observations and
actions is essential for many robotic tasks. Yet, learning effective
long-context policies from demonstrations remains challenging.
As context length increases, training becomes increasingly ex-
pensive due to rising memory demands, and policy performance
often degrades as a result of spurious correlations. Recent
methods typically sidestep these issues by truncating context
length, discarding historical information that may be critical
for subsequent decisions. In this paper, we propose an alter-
native approach that explicitly regularizes the retention of past
information. We first revisit the copycat problem in imitation
learning and identify an opposite challenge in recent diffusion
policies: rather than over-relying on prior actions, they often
fail to capture essential dependencies between past and future
actions. To address this, we introduce Past-Token Prediction
(PTP), an auxiliary task in which the policy learns to predict
past action tokens alongside future ones. This regularization
significantly improves temporal modeling in the policy head,
with minimal reliance on visual representations. Building on this
observation, we further introduce a multistage training strategy:
pre-train the visual encoder with short contexts, and fine-tune
the policy head using cached long-context embeddings. This
strategy preserves the benefits of PTP while greatly reducing
memory and computational overhead. Finally, we extend PTP
into a self-verification mechanism at test time, enabling the
policy to score and select candidates consistent with past actions
during inference. Experiments across four real-world and six
simulated tasks demonstrate that our proposed method improves
the performance of long-context diffusion policies by 3× and
accelerates policy training by more than 10×. Videos are available
at https://long-context-dp.github.io.

I. INTRODUCTION

Many robotic tasks are inherently non-Markovian: an ap-
propriate choice of action may depend not only on the current
observation but also on past observations and actions [21, 47,
15, 48]. For example, consider manipulation tasks where the
robot arm occludes critical parts of the scene, or multi-stage
tasks where early steps inform later strategies [24]. Likewise,
past actions can prescribe a style of execution, such as speed,
curvature, or strategy, that shapes how future actions should
unfold [8, 19].

Despite the importance of historical observations, learn-
ing long-context robotic policies through imitation learning
remains difficult. First, longer observation histories often in-
troduce features that spuriously correlate with actions in the
training data. Policies that latch onto such information may
diverge from expert behavior during deployment, leading to
performance degradation [10, 34]. Second, conditioning on
high-dimensional image sequences imposes a rapidly growing

memory and computation burden, making end-to-end training
excessively expensive at scale [48, 16].

To cope with these challenges, recent methods typically
limit the amount of historical information the policy sees –
either by truncating the context length [8, 5] or by engineer-
ing past observations into compact representations, such as
selecting key frames [42] and summarizing observations [48].
While these strategies reduce memory requirement, they risk
discarding information critical to subsequent decisions.

In this paper, we introduce a simple and effective approach
for learning long-context robot policies, illustrated in Fig. 1.
At the core of our method is to explicitly regularize the infor-
mation preserved from past observations. Specifically, we start
with an analysis on the discrepancy between recent diffusion
policies and their corresponding demonstrations [8, 15]. We
observe that action sequences generated by learned policies
often exhibit weaker temporal dependencies than those in
expert data. To address this, we present past-token prediction
(PTP), an auxiliary task where the policy learns to predict past
actions alongside future ones. This regularizer encourages the
model to attend more effectively to past context, significantly
boosting performance. Crucially, we find that the benefits
of PTP primarily emerge in the policy head for sequence
modeling, rather than the visual encoder.

Building upon this analysis, we introduce a multi-stage
training recipe: first, pre-train the visual encoder in a short-
context setting, where the policy learns to predict a chunk of
future actions from only a few past frames [47, 8], and subse-
quently fine-tune a long-context decoder that jointly predicts
past and future actions from precomputed image embeddings.
This design enables the policy to capture long-range temporal
dependencies while substantially reducing memory and com-
putational overhead. Beyond training, we further leverage PTP
as a self-verification mechanism during inference. At each
time step, the policy generates multiple candidate actions and
selects the one most consistent with its previously executed
actions.

In summary, our main contributions are twofold: (i) identify
a critical discrepancy in temporal action dependencies between
learned policies and expert demonstrations (§III), (ii) propose
a training and inference method for long-context imitation
learning via past-token prediction (§IV). Empirically, we val-
idate our method on diffusion-based policies [8] across six
simulation and four real-world tasks (§V). On average, our
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Fig. 1: We propose a simple framework for learning long-context diffusion policies from human demonstrations. Our method leads to 3×
gains in performance while reducing the training expense by more than 10×.

method increases the success rate of long-context policies by
3× while reducing training overhead by over 10 times. Notably,
it enables policies to achieve 80% success on history-critical
tasks where existing methods fail entirely.

II. RELATED WORK

a) Imitation Learning.: Imitation learning has long served
as a simple yet powerful paradigm for robot learning [1, 26,
45]. Early approaches typically framed it as a supervised
learning problem, where the policy learns to map a given
observation to the target action [28]. More recent works have
shifted toward modeling the distribution of demonstrations [47,
8, 15, 46, 3, 40, 12, 19]. This approach has recently achieved
remarkable success towards generalist robot policies [7, 4].
However, imitation learning remains highly susceptible to
covariate shift [10, 41, 32], e.g. Ross et al. [29] and Spencer
et al. [34] characterize compounding errors in a feedback
loop once the learned policy diverges from the demonstration
manifold. This problem is exacerbated by high-dimensional
visual inputs, where less robust features might be learned
due to underspecification [23]. Notably, recent works [8, 48]
have empirically found that image-conditioned specialist and
generalist policies degrade with history, leading many works
to exclude history altogether [37, 4, 6, 47, 14, 38, 17]. Our
work introduces and analyzes a training recipe that counteracts
this degradation.

b) Long-Context Policies.: Handling long sequences of
high-dimensional observations has been a persistent challenge
in robot learning. A common strategy is to reduce the input
history—by discarding parts of the past via adversarial regular-
ization [41], information bottlenecks [30], or selecting salient
subsets through techniques like keyframes [42] and motion
tracks [27]. Other methods construct higher-level summaries,
such as sketch synthesis [36] or visual trace prompting [48],
especially for generalist policies. These approaches rely on
the assumption that much of the historical context is irrel-
evant—a simplification that may break down in temporally

complex tasks. An alternative line of work attempts to model
the full context in an autoregressive manner using action
tokens [25, 11]. Yet, designing action tokenizers that can
effectively capture long-range temporal structure remains an
open problem [39]. Our method takes an orthogonal approach:
we explicitly regularize diffusion policies to retain information
about past actions that would otherwise be lost from historical
context.

c) Test-Time Scaling.: Recent research in language model-
ing, image generation, and robotics has shown that inference-
time compute may allow models to improve their performance
[2, 20, 22]. Some seek to build an additional verifier to re-rank
the output samples [9, 43, 18, 44], while others propose to
leverage the internal knowledge to improve reasoning through
self-verification [35]. Our method echoes the latter paradigm
in the robotic context: our policy is trained to predict accurate
past actions before predicting the present action and can self-
verify at test-time through past action accuracy. Similarly
to how it may be more compute-efficient to use test-time
compute on a small LLM [33], we show that checkpoints
trained for fewer epochs or at shorter histories can approach
the performance of optimal checkpoints by using more test-
time compute.

III. PRELIMINARIES

a) Problem Setting.: We consider the problem of im-
itation learning, where a robot learns to perform complex
tasks from expert demonstrations. At each time step t, the
robot receives a visual observation ot and executes an action
at. Crucially, we assume that each observation ot contains
only partial information about the underlying state st, but
the complete information about st can be inferred from the
history of observations. This setting encapsulates practical
challenges commonly encountered in robotic tasks, such as
latent strategies in the demonstrations (e.g., expert preference),
temporal context (e.g., stage within a task), and perceptual
limitations (e.g., visual occlusions).



Fig. 2: Comparison of regression-based and
diffusion-based policies in temporal action depen-
dency, normalized by that in demonstrations.
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Fig. 3: Illustration of past-token prediction. The policy head is trained to jointly predict
both past and future action tokens, encouraging the model to capture the temporal
dependencies that are otherwise lost between past and future actions.

Given a dataset of N expert demonstrations D = {τi}Ni=1,
where each demonstration trajectory τi consists of a sequence
of observation-action pairs, our goal is to learn a long-
context policy πθ(at:t+l|ot−k:t) that takes as input the current
observation along with the history ot−k:t = (ot−k, . . . , ot)
over the past k time steps, and predicts the current and future
actions at:t+l = (at, . . . , at+l) spanning the next l time steps.
While increasing the context length k provides richer historical
information, the resulting long-context policies often suffer
from substantial performance declines [8, 48].

b) Practical Challenges.: One central challenge in long-
context imitation learning arises from the prevalence of spu-
rious features in observation history. As context length in-
creases, the model is exposed to a growing set of input
features, some of which correlate with but do not causally
influence the expert actions. Policies relying on these spurious
features in observation history may reach high prediction
accuracy within the training distribution but generalize poorly
during deployment [10]. One notable manifestation is the
copycat behavior [41], where the learned policy simply mim-
ics previous actions as predictions for future ones, ignoring
current state observations. Does this phenomenon persist in
modern imitation learning methods?

To understand this, we evaluate temporal action dependen-
cies by measuring how predictable the current action is from
prior actions alone. Specifically, given a set of demonstrations,
we first train long-context policies with varying observation
history lengths. We then collect policy rollouts and train a
simple two-layer MLP ϕ(at|at−1) to predict the current action
based solely on the previous action. We measure the mean-
squared error ϵπ of the MLP predictor on holdout rollouts
and similarly obtain ϵπ∗ for expert demonstrations. Follow-
ing [41, 31], we define the action predictability ratio as ϵπ∗/ϵπ .
Intuitively, a ratio greater than 1 indicates an over-reliance on
previous actions (i.e., copycat behavior), while a ratio less than
1 indicates weaker-than-expert action dependency.

Fig. 2 shows the action predictability ratios for classical
regression-based policies and modern diffusion-based poli-
cies [8] across three simulation tasks in RoboMimic [21].
Interestingly, the two approaches exhibit opposite failure

modes: The regression-based policies indeed exhibit high
action predictability, even exceeding that of the expert demon-
strations. In contrast, modern diffusion-based policies yield
predictability ratios significantly below 1, indicating a surpris-
ing underuse of past action information despite conditioning
on long observation histories. Ideally, an effective imitator
should not only learn to accurately predict expert actions in
the training set, but also reach a similar level of temporal
action dependencies in its rollouts. We will next introduce a
method designed to explicitly bridge this gap.

IV. METHOD

In this section, we introduce a long-context imitation learn-
ing method, aiming to improve both policy performance and
training efficiency. We will first describe a simple but crucial
auxiliary task to enhance temporal dependencies in sequential
decision-making (§IV-A). We will then present a multi-stage
training recipe that preserves the benefit of this auxiliary task
while reducing memory consumption (§IV-B). Finally, we will
introduce an inference technique that leverages the auxiliary
task to effectively self-verify sampled predictions at test time
(§IV-C).

A. Past-Token Prediction

One common design choice in imitation learning is next-
token prediction, where the policy predicts only the immediate
next action token at each time step. To better capture temporal
dependencies, recent methods have extended this to predict a
chunk of future action tokens [47, 8]. However, as shown in
§III, this design alone remains insufficient for modeling the
critical dependencies between past and future decisions.

We address this issue through Past-Token Prediction (PTP),
an auxiliary objective that tasks the policy to predict past ac-
tion tokens alongside future ones. Formally, given a sequence
of observations ot−k:t, the policy is trained to jointly predict
the action tokens from the past time step t−k to the upcoming
time step t+ h:

ât−k:t+h = πθ(ot−k:t). (1)
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Fig. 4: Overview of multistage training with embedding caching.

As illustrated in Fig. 3, this objective expands the prediction
window in both temporal directions, explicitly encouraging
the policy to preserve information about past actions from the
history context.

B. Memory-Efficient Training with PTP

Recent imitation learning approaches typically train visuo-
motor policies end-to-end, jointly optimizing both the visual
encoder and the policy head. However, this strategy incurs
memory costs that grow linearly with context length, making
it prohibitively expensive to train long-context policies.

To address this, we propose a multi-stage training recipe
that decouples visual representation learning from policy opti-
mization. Our training process consists of three specific stages:

1) Encoder Training: We first train the visual encoder with
a short observation context but a long prediction horizon,
encouraging it to extract representations that retain infor-
mation critical for predicting l subsequent steps.

2) Feature Caching: We then freeze the encoder and pre-
compute embeddings for all frames in the training set.
This caching step eliminates redundant computation dur-
ing policy training.

3) Policy Training: Finally, we train the policy head con-
ditioned on long-context observations represented by the
cached embeddings. This enables the policy to model
long-range dependencies without repeatedly processing
visual inputs.

As shown in Fig. 4, this multistage training approach retains
a computational footprint similar to short-context training
while enabling efficient scaling to longer observation contexts.
In Appendix C, we show in more detail how the features of
a short-history policy are sufficient to support strong long-
context performance.

C. Test-Time Verification with PTP

Another common challenge in recent diffusion policies lies
in the robustness of sampled predictions. Often, not all samples
are equally good at capturing the critical temporal dependen-
cies. Recent work has explored re-ranking sampled predictions
based on consistency with past predictions [19]. However,
when the previous prediction for future actions is suboptimal,
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Fig. 5: Test-time verification. Multiple action sequences are sampled
from the same observation, and the policy selects the sequence that
is most consistent compared to ground-truth previous actions.

e.g. because of unexpected environmental changes, this ap-
proach may propagate errors rather than correct them.

To address this shortcoming, we cast Past-Token Prediction
as a self-verification mechanism during deployment. At each
inference step, we sample a batch of B candidate action
sequences:

A = {â(1), . . . , â(B)}, â(i) ∼ πθ(ot−k:t), (2)

where each sampled candidate â(i) = (at−k, . . . , at+h)
(i)

includes both reconstructed past actions and predicted future
actions. Since the first k − 1 actions have already been
executed, we use them as a ground-truth reference and select
the candidate whose reconstructed past actions best match the
executed ones:

â∗ = argmin
â∈A

t−1∑
τ=t−k

∥âτ − aτ∥2 (3)

As illustrated in Fig. 5, this sample selection procedure is
fully parallelizable on GPU devices, enabling self-verification
of temporal action dependencies with minimal overhead.

V. EXPERIMENTS

In this section, we evaluate the proposed method for learn-
ing long-context diffusion policies. We seek to answer the
following questions regarding policy performance and training
efficiency:

1) How effectively does PTP mitigate the lack of temporal
action dependencies shown in §III?

2) How well do the resulting policies perform on tasks that
require history-aware decision-making?

3) To what extent does the proposed multi-stage training
recipe accelerate policy learning?

4) Could PTP verification further mitigate deficiencies in
temporal dependencies at test time?

5) Finally, how do these findings generalize to history-critical
tasks in the real world?

To this end, we evaluate our method on the modern
diffusion-based policy [8], in comparison with the classical
regression-based policy. By default, both policies receive vi-
sual and proprioceptive observations from the past 16 time
steps as conditional input. We compare policies trained with
PTP against two baselines: no-history policies that take only
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Fig. 8: Effect of feature caching. Caching
speeds up training by over 5× without hurting
performance. On complex tasks like Tool
Hang, long-context policies fail to perform
even after two days without caching.

the current and past single frame as input, and no-PTP policies
that are trained without PTP. Unless otherwise specified, all
policies are trained using the multistage recipe with feature
caching and evaluated under a single-sample inference setting.
The effect of test-time verification is evaluated separately
across multiple checkpoints under varying sample budgets.
Additional results are presented in Appendix A, with imple-
mentation details provided in Appendix E.

A. Simulation Experiments

We first evaluate our method across six simulated tasks.
Four of these are sourced from existing benchmarks: square,
tool hang, and transport from RoboMimic [21], each provided
by multi-human demonstration datasets, and Push-T from Chi
et al. [8]. These tasks feature diverse strategies in demonstra-
tions, requiring the policy to infer and commit to consistent
behaviors over time based on historical context. In addition, we
introduce two new long-horizon simulation tasks: long-horizon
square, where the robot must place and remove a square onto
the peg twice before finally dropping it in the peg; and long-
horizon aloha, where one arm must pick up a block, move it
to the center of the field of view, and return it precisely to its
original location. Success in these new tasks critically depends
on the ability to recall and act upon information observed
earlier in the episode. Each policy-task pair is evaluated over
100 episodes across three random seeds. We next summarize
the key findings from these simulation experiments.

Takeaway 1: PTP mitigates deficiencies in modeling tem-
poral action dependencies. To validate the effect of PTP on
modeling temporal action dependencies, we use the same set
of tasks as in §III and train policies to predict a variable
number of past tokens {ât−c−1, . . . , ât}, where c denotes the
number of actions included in the prediction target. Specif-
ically, we compare three variants: (i) no-PTP with c = 1,
equivalent to the vanilla next-token prediction baseline; (ii)
half-PTP with c = 8, which predicts action tokens corre-
sponding to half the observation window; and (iii) full-PTP
with c = 16. As shown in Fig. 6, PTP consistently increases
the action predictability and gets closer to that observed in the

expert demonstrations. Notably, the non-PTP baseline exhibits
approximately 10× to 100× weaker action predictability ratios
compared to expert behavior, whereas full-PTP yields temporal
dependencies comparable to demonstrations.

Takeaway 2: PTP significantly improves the performance
of modern policies. To assess the impact of PTP on task per-
formance, we compare our method against the no-history and
no-PTP baselines on two classes of policies: diffusion-based
versus regression-based. All models are evaluated following
the protocol from [8], with action chunking set to 8 time
steps. As shown in ??, while the no-history baseline already
performs competitively on some existing tasks, PTP matches
or surpasses its performance. The advantage of PTP is partic-
ularly pronounced in long-horizon tasks: both the no-history
and no-PTP baselines struggle with success rates below 30%,
whereas our method achieves near-perfect performance on the
long-horizon tasks. Averaged across all six simulation tasks,
PTP yields an average 50% improvement for diffusion-based
policies when conditioned on long contexts, and outperforms
the regression counterpart by nearly 20%.

Takeaway 3: PTP-trained policies benefit from longer
contexts. To further understand the role of historical contexts,
we evaluate PTP-trained diffusion-based policies conditioned
on observation histories of varying lengths, ranging from 2 to
16 time steps. As shown in Fig. 7, longer histories generally
lead to improved performance. For relatively simple tasks such
as square, gains tend to saturate beyond 4 steps; however, for
more complex tasks, such as transport, long-horizon square,
and long-horizon aloha, longer contexts provide substantial
performance boosts.

Takeaway 4: Embedding caching accelerates PTP training
without sacrificing performance. To assess the effectiveness
of the proposed multistage training strategy, we train history-
conditioned diffusion policies with and without embedding
caching for two days on the three tasks used above (§III),
evaluating checkpoints saved every 50 epochs. As shown
in Fig. 8, the vanilla training recipe without caching completes
a limited number of epochs within the time budget. In contrast,
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Fig. 10: Comparison of different policies on four real-
world tasks that critically depend on historical context.
Our method yields over a 55% improvement compared
to baselines.

our caching-based approach matches performance in just 20%
of the training time and surpasses it within 40% of the compute
budget.

Takeaway 5: PTP verification boosts performance in chal-
lenging settings at test time. To validate the potential of
self-verification through PTP, we evaluate history-conditioned
policies on three challenging tasks, including Tool Hang,
Transport, and Long Square, trained under constrained com-
pute budgets and tested with varying sampling budgets {1, 3,
5, 10}. As shown in Fig. 11, PTP-guided sample selection
provides notable performance gains. Notably, increasing the
number of sampled candidates from 1 to 5 results in approx-
imately 5% improvement in success rate on all these tasks.

B. Real-World Experiments

We next examine our method on four history-critical tasks
across two robot platforms in the real world: Franka block
switch: move a block from one side to another, where history
is needed to correctly infer which side to place the block;
Franka two scoops, transport two scoops to the target, where
history is needed to count scoops; Franka mug replacement
and ALOHA tape replacement: replace one mug or tape by
another, where history is needed to distinguish old and new
objects. Across all tasks, we use diffusion-based policies with
a context length of 16 and a chunk size of 8. Due to different
ranges of temporal dependency in these tasks, we apply task-
specific subsampling rates detailed in Appendix E.

Quantitatively, PTP outperforms baselines by over 4× in
the real world. As shown in Fig. 10, the no-history baseline is
limited to an average success rate of 15% due to the absence
of critical history information. The no-PTP baseline, which
simply conditions on history without PTP, yields near-zero
success on three of four tasks. In contrast, our method achieves
an average 70% success rate. Notably, on Tape Replacement,
one of the most challenging tasks across the board, our method
achieves 80% success, while the two baselines fail entirely.

Qualitatively, PTP-trained long-context policies excel at
both high-level and low-level memory. As shown in the
videos on the website, the two baselines exhibit distinct failure

modes: the no-history policies often fail at high-level decision-
making, such as replacing the wrong object or miscounting
scoops, whereas the no-PTP baseline struggles with low-level
motor control, such as unsuccessful grasps and inaccurate
placements. In comparison, policies trained with our method
demonstrate improvement in both high-level planning and low-
level control, resulting in more coherent and reliable behaviors.

VI. CONCLUSION

We have presented Past Token Prediction (PTP), a sim-
ple yet effective auxiliary objective for learning history-
conditioned diffusion policies from demonstrations. We have
shown that PTP can effectively strengthen temporal action
dependencies that are often lost in recent diffusion policies.
In addition, we have introduced a multistage training strategy
and a self-verification mechanism that allow for effective use
of PTP during both training and inference. Experiments across
ten manipulation tasks in both simulations and the real world
demonstrate its advantages in efficiency and effectiveness.

VII. LIMITATIONS AND DISCUSSION.

Our work has focused on extending context length specif-
ically for diffusion policies, motivated by their growing
prevalence in the robot learning community. Nevertheless,
the effectiveness of our method may generalize to other
classes of modern policies as well. In fact, concurrently with
our work, Vuong et al. [39] observes similar challenges in
tokenization-based policies. Extending our approach to such
settings, and more broadly, designing action tokenizers that
better preserve temporal structure, can be an exciting avenue
for future research. Another practical challenge our method
faces is inference overhead. While we have shown that caching
and reusing visual embeddings can increase training efficiency,
inference remains a practical bottleneck for closed-loop op-
erations. To make inference time manageable, we followed
common practices from recent literature by downsampling
observation history and extending action chunk. However,
these adjustments are known to compromise policy reactivity.
Designing strategies to further accelerate inference could be
another fruitful direction for future research.
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APPENDIX

A. Additional Experiments

In addition to the main results presented in §V-A, we conduct three experiments to further validate the design decisions
behind our proposed method.

B. Test-time Scaling Further Results

We provide the figure for the test-time scaling results.
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Fig. 11: Effect of PTP self-verification. Increasing sampling budgets yields a 5% gain in challenging closed-loop settings.

C. Which component of the policy benefits most from PTP?

To identify which part of the policy is most influenced by PTP, we compare a fully PTP-trained long-context policy against
two ablated variants: Encoder PTP, where we first train the visual encoder with PTP, then freeze it and train the action decoder
without PTP; Decoder PTP, where we conversely train the encoder without PTP, freeze it, and then apply PTP only during
decoder training. As shown in Fig. 12, Decoder PTP achieves performance on par with the fully trained PTP policy, whereas
Encoder PTP performs significantly worse. This result suggests that the benefits of PTP primarily stem from improved temporal
modeling in the action decoder, rather than from changes to the visual encoder, directly motivating our multi-stage training
recipe that decouples encoder pretraining from long-context policy learning.

Fig. 12: Performance of ablated PTP variants on Push-T. Applying PTP only to the decoder recovers the full PTP policy performance,
whereas encoder-only PTP does not.

D. Does our method reduce reliance on action chunking?

Existing short-context policies typically rely on action chunking compensate for limited access to past observations. However,
this common design choice comes at the cost of reduced reactivity. To assess whether our method alleviates this limitation,
we compare the performance of three policy variants: (i) short-context short-chunk, which receives the past 2 frames as input



and outputs single-step actions (chunk size 1); (ii) long-context short-chunk, which receives the past 16 frames and also
outputs single-step actions; and (iii) long-context long-chunk, which receives the past 16 frames and outputs action chunks of
size 8. As shown in Fig. 13, the long-context short-chunk policies trained by our method substantially outperform the short-
context counterparts and recover most of the performance of the long-context long-chunk policies. This result demonstrates the
effectiveness of our method in reducing reliance on open-loop action chunking.

short; chunk=1 long; chunk=1 long; chunk=8

Fig. 13: Comparison of policies with different context lengths and chunk sizes. Long-context policies trained with PTP perform significantly
better than short-context policies when run in a fully closed-loop setting (chunk size 1). Moreover, they achieve performance comparable to
long-context policies that use open-loop chunking (chunk size 8), indicating reduced reliance on chunking during execution.

E. Is PTP still critical when conditioning on past actions?

Our earlier analysis in Fig. 6 has shown the importance of PTP in capturing temporal action dependencies when the policy
is conditioned on past observations. A natural question is whether PTP remains necessary when the model also has direct
access to past actions. To understand this, we augment the input to diffusion policies with the previous 16 actions and compare
performance with and without PTP. As shown in Fig. 14, even with access to past actions, the vanilla baseline performs poorly
without PTP, while our method consistently yields substantially better results. Consistent with our previous findings, this result
highlights the critical role of PTP in enabling diffusion policies to effectively model temporal structure, even when past actions
are explicitly provided.
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Fig. 14: Comparison of adding past actions into the context history without PTP and our baseline of PTP and no PTP without actions. We
observe that adding past actions in the observation doesn’t improve performance.

F. Real-World Tasks

We conduct real-world experiments using two robot platforms: a Franka Panda arm set up, and the ALOHA bimanual
system. For the Franka setup, we follow the DROID hardware configuration [13], using a single arm with wrist-mounted RGB
cameras and proprioceptive sensing. The observation space includes RGB images and end-effector pose, while the action space
consists of 6-DoF Cartesian displacements and gripper commands. We collect 50-200 human demonstrations for each task. For
the ALOHA platform, we use the bimanual robot as described in [47], with RGB camera inputs and proprioceptive feedback.
The observation space consists of dual-arm RGB views and proprioception, and the action space includes joint displacements
for both arms and gripper states. We collect 150 demonstrations for the tape replacement task.



TABLE I: Hyper-parameters in simulation and real-world experiments.

Hyperparameter LH Square LH Aloha Block Move Two Scoops Mug Repl. Tape Repl.

Epochs 500 1500 500 500 500 1500
# Demos 100 50 50 200 200 150
# Subsampled frames 20 20 1 20 1 24
# Observations 20 32 10 20 32 20

G. Simulation Tasks

Our simulation tasks include the Push-T task [8], three existing tasks in the Robomimic benchmark [21], along with two
new long-horizon tasks that we introduce:

• Long-Horizon Square: A variant of the RoboMimic square task, where the robot must place a block onto the farthest peg
from its initial location. We collect 100 noisy scripted demonstrations to prevent the policy from inferring the goal using
current pose information alone, thus requiring memory of the initial state.

• Long-Horizon ALOHA: A simulated bimanual task where one arm picks up a block, moves it to the center of the workspace,
and places it back at its original location. Success requires remembering the block’s starting position, highlighting the
need for long-term memory.

H. Implementation Details

1) Policy Architecture

We build upon the transformer-based Diffusion Policy codebase [8], which supports training and evaluation across multiple
Robomimic tasks. All policies are trained for 500 epochs by default, using visual encoders and chunked action prediction.
For long-horizon ALOHA tasks, we train for 1500 epochs to accommodate the added difficulty of bimanual coordination
and higher-frequency control. To reduce training overhead, all long-context policies are initialized with a frozen short-context
encoder, pretrained on 2-frame inputs. This design choice is supported by the analysis in Fig. 12, which shows that freezing
the encoder does not impair performance. To further improve training efficiency, we cache visual embeddings during data
preprocessing and load them at runtime. This avoids repeatedly passing observations through the encoder and speeds up
training.

2) Subsampling Rate

Real-world tasks often require longer history horizons, but full-length observation sequences can be computationally
expensive. To reduce inference latency, we apply temporal subsampling to the input sequence. Specifically, instead of feeding
all T observations t0, t1, ..., tT−1, we sample every Kth frame, i.e., tK−1, t2K−1, ..., tT−1, where T is a multiple of K. This
reduces the effective observation size while retaining broad temporal coverage. Subsampling values are listed in Table I.

3) Context Length

When increasing the observation history, we scale the prediction horizon (past and future tokens) proportionally. We
empirically find that the prediction length of future tokens has only a minor effect on task performance. Detailed context
length configurations are provided in Table II.

TABLE II: Settings for different context lengths

Observation Length 2 4 8 16

Horizon 16 20 24 32
Future Tokens 14 16 16 16

4) Action Dependency Metric

To quantify how well a policy captures temporal action structure, we use action predictability as a proxy metric [41].
Specifically, we measure how accurately the current action at can be predicted from a window of K = 15 past actions, defined
as p(at | at−K:t−1). We compute this quantity over policy rollouts and compare it to the same metric evaluated on the expert
demonstrations. Higher predictability indicates stronger temporal action dependencies captured by the learned policy.

In addition to the results reported in §V-A, we report per-task success rates across varying temporal context lengths, training
conditions, and chunking configurations. Table III compares diffusion-based and regression-based baselines on six benchmark



tasks, evaluated under different history lengths and with or without PTP. Table IV presents results in the closed-loop setting
(chunk size = 1) across different context lengths.

TABLE III: Success rate (%) of diffusion-based and regression-based policies on simulation tasks under different training and history
conditions. Results are reported as mean ± standard deviation across 3 seeds.

Method Push-T Square Tool-Hang Transport ALOHA Long Square

Diffusion (PTP) 0.62 ± 0.02 0.89 ± 0.01 0.75 ± 0.10 0.67 ± 0.08 0.98 ± 0.01 0.93 ± 0.02
Diffusion (no-PTP) 0.59 ± 0.01 0.17 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.19 0.03 ± 0.02
Diffusion (no-hist) 0.67 ± 0.03 0.79 ± 0.06 0.51 ± 0.14 0.60 ± 0.08 0.28 ± 0.04 0.12 ± 0.05
Regression (PTP) 0.40 ± 0.10 0.74 ± 0.02 0.41 ± 0.01 0.63 ± 0.04 0.99 ± 0.02 0.90 ± 0.05
Regression (no-PTP) 0.31 ± 0.31 0.78 ± 0.03 0.40 ± 0.05 0.51 ± 0.01 1.00 ± 0.00 0.89 ± 0.01
Regression (no-hist) 0.64 ± 0.08 0.19 ± 0.01 0.14 ± 0.04 0.48 ± 0.03 0.43 ± 0.03 0.00 ± 0.00

TABLE IV: Success rate (%) on simulation tasks under closed-loop execution (chunk size = 1) .

Observations Push-T Square Tool Hang Transport Long Square Mean

2 0.53 0.13 0.62 0.053 0.02 0.37
4 0.53 0.68 0.84 0.13 0.02 0.51
8 0.59 0.83 0.86 0.48 0.11 0.63
16 0.64 0.85 0.82 0.51 0.81 0.77
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