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Abstract—Diffusion models have emerged as a promis-
ing choice for learning robot skills from demonstrations.
However, diffusion models are neither robust to visual
distribution shifts nor sample-efficient for policy learning.
In this work, we present ‘Factorized Diffusion Policies’
abbreviated as FDP, a novel theoretical framework to learn
action diffusion models without the need to jointly condi-
tion on all observational modalities such as proprioception
and vision. Using our factored approach leads to 10%
absolute performance improvement for ten RLBench and
four Adroit tasks when compared to a standard diffusion
policy which jointly conditions on all modalities. Moreover,
FDP results in 25% higher absolute performance across
five RL Bench tasks with distribution shifts such as visual
changes or distractors, where existing diffusion policies
fail catastrophically. Our real-world experiments show that
FDP is safe and relatively robust to deploy against visual
distractors and appearance changes when compared to
standard diffusion policies. Videos are available at https:
//fdp-policy.github.io/fdp-policy/.

I. INTRODUCTION

Diffusion models have emerged as a promising choice
for learning robot skills from demonstrations [5]. Follow-
ing various diffusion models, several generative models
originally proposed in the vision literature have been
used for robot learning, exploiting properties such as
one-step inference [48, 26] and multimodal priors [3].
However, unlike computer vision, conditioning is critical
in robotics due to the numerous observational modal-
ities that influence the robot’s action choices. Humans
prioritize different sensory modalities according to the
specific requirements of the task [40]. Humans have
also been shown to prioritize the more reliable modality
between vision and haptics [11]. Naturally, based on the
task, robot skills should also depend more strongly on
certain observational modes than others. For instance,
repetitive motions like dance are more likely to depend
on the robot’s proprioception, while search and rescue
is conditioned strongly on its vision.

However, the current method of training diffusion poli-
cies jointly conditions the action diffusion process on
all the observational modalities for every task [5]. This
is a monolithic joint conditioning approach – “when
all you have is a hammer, everything looks like a
nail”. Learning the full conditional action distribution

Fig. 1: Training and inference for learning visuomotor
policies using FDP with vision as a residual over propri-
oception. FDP is robust to deployment with distractors
and camera occlusions.

makes Diffusion Policies sensitive to distribution shifts
in any of the modalities. We show that learning the full
conditional results in low sample efficiency, brittleness
to distribution shifts. In this work, we propose a novel
theoretical framework ‘Factorized Diffusion Policies’
FDP for learning action diffusion models that decouples
observational modalities for prioritization. At its core,
FDP learns a residual model using some input modalities
that have been omitted while training a base model with
prioritized inputs. The base and residual model outputs
are then composed to obtain samples from the full
conditional action distribution. In addition, we present
an architecture that enables efficient learning of the
residual model in the FDP framework. We demonstrate
that prioritization of modalities may yield significant
gains in sample efficiency and naturally improves policy
robustness to distribution shifts in the residual observa-
tions. Our contributions are as follows.

1) We introduce Factorized Diffusion Policies (FDP),
a novel theoretical framework for training diffusion
models on robot demonstration data that decouples
observation modalities for prioritization. We derive
a novel loss function for learning a residual model
on top of a policy trained with prioritized modalities,
and propose an efficient architectural implementation
to ease its learning.

2) Our experiments show that prioritization of obser-
vational modalities produces significant sample ef-
ficiency gains in several RLBench [18] and Adroit
hand manipulation [12] environments. We show
through several distractor experiments on RLBench
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that learning a visual residual model using FDP
results in policies that are 25% more performant over
standard diffusion policies.

3) We collect demonstrations across several task envi-
ronments on a real robot and evaluate both FDP and
standard diffusion policy in the original environments
as well as in modified versions with visual distractors
and appearance changes. In our real-world experi-
ments, FDP outperforms diffusion policies by over
40% in the presence of distractors, occlusions and
appearance changes.

II. BACKGROUND AND RELATED WORK

Diffusion Models. Gaussian diffusion models [32] learn
the reverse diffusion kernel pθ(xt−1|xt) for a fixed
forward kernel that adds Gaussian noise at each step
q(xt|xt−1) = N (xt;

√
αtxt−1, (1 − αt)I), such that

q(xT ) ≈ N (0, I). Here, t <= T is the diffusion
time step and αt is the noise schedule. For training
the model, maximization of the evidence lower bound
on the log-likelihood of the data distribution log q(x0)
yields the commonly used loss function in Equation 1
[16, 22].

Lt(θ) = Ex0∼q(x0), ϵ0∼N (0,I)
[
λt[||ϵ0 − ϵ̂θ(xt, t)||22]

]
(1)

Here, λt, a function of αt is the weighting parameter for
different time steps, usually taken as 1 [16]. The model
is trained to predict the noise ϵ0 added to the data sample
x0 to generate the noisy sample xt taken as input to the
network.

Connection to Score-based Models. Song et al. [36]
presented a unified framework showing that both dif-
fusion models [32, 16] and score-based models [34]
can be interpreted as discretizations of different for-
ward stochastic differential equations (SDEs). Denoising
score matching (DSM) [38] is used to learn the score
∇x̃ log qσ(x̃) at different noise scales σ required for
sampling from the data distribution via the corresponding
reverse-time SDEs [1]. Explicit Score Matching (ESM)
[17, 38] was proposed to estimate this score by minimiz-
ing the Fisher divergence with the Gaussian-smoothed
data distribution qσ(x̃)=

∫
q(x)N (x̃;x, σ2I)dx. DSM

alleviates the computational difficulties of ESM [38, 35,
2], and is shown in Equation 2, where sθ(x̃) represents
the learned score model.

Jσt
(θ)

ESM
= Eqσt (x̃)

[
1

2
∥∇x̃ log qσt

(x̃)− sθ(x̃)∥22

]
DSM
= Eqσt (x,x̃)

[
1

2
∥∇x̃ log qσt(x̃|x)− sθ(x̃)∥22

]
+ C

Diffusion models use a forward transition kernel
q(xt|x0) = N (xt;

√
ᾱtx0, (1 − ᾱt)I) with discrete

time and ᾱi =
∏i

j=1 αj , yielding the loss shown

in Equation 1, while score-based model typically use
N (x̃;x, σ2

t I), where αt and σt are respective noise
scales. Based on the equivalence of Equations 1 and 2,
an optimal diffusion model learned using Equation 1, is
related to the score of the diffused data distribution by
ϵ∗θ(xt, t)/

√
1− ᾱt = ∇xt

log q(xt) [36, 22]. Typically,
diffusion models generate samples via progressive de-
noising through the reverse diffusion process [16], while
score-matching models sample from the data distribution
using Langevin dynamics [30, 29].

Relevant work in Robotics. Sample efficiency and
generalization are of primary importance in robotics, as
scaling the collection of multimodal data is difficult and
the number of variations of tasks is unbounded. While
generative model families such as diffusion [5], score-
based models [28], stochastic interpolants [3], and flows
[48] have been applied in robotics, they do not address
these limitations. Prior compositional works have tried to
address these problems by composing learned constraints
to generalize to new task combinations in manipulation
[20] and planning [44], or composing distributions across
heterogeneous modalities for tool use [42]. However,
all the previous works compose learned or analytical
distributions, limiting their application to combinations
of existing solutions. Instead, in our FDP framework, we
learn a residual over a base policy that, when composed
with the base policy, provides samples corresponding to
the data distribution. Recent augmentation-based meth-
ods [45, 4] improve generalization but add a substantial
computational overhead and remain vulnerable to visual
failures like temporary camera occlusions or dynamic
scene changes. In contrast, FDP is an algorithmic im-
provement that achieves robustness to such perturbations
without data augmentations as demonstrated in our real-
world experiments.

III. METHODOLOGY

Assume that we have robot demonstrations D =
{(x,y)i} where i = 1..N , consisting of actions x and
different observational modalities y1:M , such as images
or point clouds from different cameras and propriocep-
tion data. We are interested in learning p(x|y) from the
data such that given a task description, current camera
images, state of the robot, and other observations, we
can sample an action x with a high likelihood in the
data distribution. Most treatments of diffusion models
have been studied primarily in the context of single-
modality distributions, such as those over image pixels
[16, 33, 34]. This formulation has been directly adopted
by the robotics community [5, 28, 21], leading to the
optimization objective shown in Equation 3.

Lt(θ) = E(x0,y)∼q(x0,y), ϵ0∼N (0,I)
[
||ϵ0 − ϵ̂θ(xt,y, t)||22

]
(3)



Here, the network ϵθ is conditioned on the observation
y, and is trained to predict the noise added to the action
sample x. Although prior work in robotics adopts this
conditional formulation [5], it is assumed without formal
justification that the trained network maximizes the log-
likelihood of the conditional distribution p(x|y). Hence,
we present our first result as follows.
Lemma III.1. The diffusion loss function Lt(θ) as
defined in Equation 3, in expectation over the time-
steps 1 ≤ t ≤ T , maximizes the variational lower
bound on the log-likelihood of the conditional data dis-
tribution log q(x|y), under a Markovian noising process
q̂(xt|xt−1) and the conditional reverse transition kernel
as q̂(xt−1|xt,y).

The proof for Lemma III.1 is presented in Ap-
pendix C-B. In Equation 3, ϵθ(xt,y, t) arises from
the reparametrization of the reverse transition kernel
qθ(xt−1|xt,y

1:M ), and from a score-based perspec-
tive, it learns the score of the full action conditional
∇xt log q(xt|y1:M ) times a constant. We argue that
learning the full conditional directly is restrictive in sev-
eral aspects of robot learning. Firstly, it necessitates the
joint collection of the robot action and all observational
modalities. Secondly, the model is vulnerable to even
small distribution shifts in any modality. These shifts
require a prohibitively large amount of data to address
when the observation modalities are high-dimensional.
Finally, among the multiple observation modalities it is
hard to pinpoint the level of each mode’s task dependent
influence with limited data. Hence, we present FDP,
a method to add structure and decouple observational
modalities in the score of the full action conditional
∇xt

log q(xt|y1:M ). By factorizing modalities using
Bayes’ theorem and learning residuals for subsequent
terms, FDP effectively encodes task requirements and
learns policies robust to distribution shifts in residual
modalities.

A. Factorized Diffusion Policies

Let y1:k be the prioritized observational modalities of
the M total modalities, where y1:k ≡ y1, ..,yk and
1≤k<M . To decouple the observational modalities, we
utilize Bayes’ theorem on the score of the full action
conditional to obtain the following.

∇xt
log p(xt|y1:M ;θ,ϕ) = ∇xt

log p(xt|y1:k;θ)

+∇xt
log p(yk+1:M |xt,y

1:k;ϕ)

To prioritize modalities y1:k, we propose to first learn a
diffusion policy πbase: ϵθ(xt,y

1:k, t) that corresponds to
the first score term on the right-hand side of Equation
4, times a constant. To learn the second score term,
explicitly training a classifier p(yk+1:M |xt,y

1:k) [6] is

impractical due to the high dimensionality and continu-
ity of observational modalities y1:M , such as images.
Hence, we employ explicit score matching [17, 38] as
shown in Equation 5.

Dt
F = Epα,τ (xt,ỹ1:M )

[
1

2

∥∥∥∥ ∇xt log pϕ(ỹ
k+1:M |xt, ỹ

1:k)
−∇xt log pα,τ (ỹ

k+1:M |xt, ỹ
1:k)

∥∥∥∥2
2

]

Here, observational modalities y1:M can be noised with
a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that is
small enough such that pτ (ỹi) ≈ p(yi). Chao et al. [2]
show that the empirical score is difficult to estimate for
large datasets and derive the denoising likelihood score
matching (DLSM) objective for conditional distributions,
which forms the basis for our next result.
Theorem III.2. Explicit score matching for
∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k), as expressed in

Equation 5 with x noised with the diffusion kernel
N (xt;

√
αtx0, (1−αt)I), is equivalent to the following

loss:

Lt
res(ϕ) = Ex0,y

1:M ,ỹ1:M∼pτ

ϵ0∼N (0,I)

[
1

2

∥∥∥∥ϵ0− ϵθ(xt, ỹ
1:k, t)

−ϵ̂ϕ(xt, ỹ
1:M , t)

∥∥∥∥2
2

]

Here ϵθ(xt, ỹ
1:k, t) is fixed and optimal such

that ϵθ(xt, ỹ
1:k, t)=E[ϵ0|xt, ỹ

1:k] and estimates√
1− ᾱt ∗ ∇xt

log p(xt|ỹ1:k). The parameterized
model ϵ̂ϕ(xt, ỹ

1:M , t) is learned to estimate√
1− ᾱt ∗ ∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k).

The proof for Theorem III.2 is presented in Appendix
C-C. Equation 6 allows us to learn the score of the
classifier πres: ϵ̂ϕ(xt, ỹ

1:M , t) times a constant as a
residual over frozen πbase to predict noise ϵ0 added to
the action x0. Learning πres as a residual of πbase ensures
that the model does not overfit modalities yk+1:M , but
only learns correlations to bridge the gap between the
expected score and the predicted score of the model πbase
trained on the prioritized modalities y1:k. Hence, policies
learned in this factorized way are naturally robust to
distribution shifts in the residual modalities. Moreover,
explicit prioritization of y1:k by training πbase prior to
learning the residual leads to sample efficiency, as the
model learns correlations with the stronger modality
without having to attend to other modalities. Since
diffusion models are trained on discrete time steps, the
residual is learned on the same time discretization as
used for πbase. Once trained, actions can be sampled
from the conditional distribution p(x|y1:M ) using re-
verse diffusion [16] on the composition [10] of πbase and
πres:

xt−1 ∼ N
(
xt;

1√
αt

(
xt − 1−αt√

1−ᾱt
ϵ(xt,y

1:M , t)
)
,
√
1− αtI

)
ϵ(xt,y

1:M , t) = ϵθ(xt,y
1:k, t) + ϵϕ(xt,y

1:M , t)
(7)



The specific instantiations of FDP for combinations
of modalities are presented in Appendix C-A. Note
that the base mode πbase: ϵ̂θ(xt,y

1:k, t) can be further
decomposed with respect to observational modalities.
In this work, the residual model πres is learned in
expectation over data collected jointly for all modal-
ities y1:M , of which y1:k are used for training πbase.
However, we emphasize that an important feature of our
learning formulation is that it enables decoupled data
collection for additional conditionals that could then be
used to learn the residual. This potentially may alleviate
some difficulties encountered for scaling coupled data in
robotics and is left for future work.

B. Architectural Implementations of FDP

The base and residual models in FDP, denoted by πbase
and πres, can be instantiated using standard architectures
such as UNet [31] or DiT [24]. FDP involves the
additional step of learning πres as a residual over a frozen
πbase. During inference we compose the outputs of these
as shown in Figure 2 [b]. However, we find this late-
stage residual learning to be inefficient in practice and
propose a more integrated way to compose πbase and
πres, as shown in Figure 2. This architecture enables
a simplified training objective for the residual model,
equivalent to Equation 3. Instead of learning a residual
for the final score output, πres learns the blockwise
residual over the intermediate outputs of the frozen πbase.
Specifically, let F i

base and F i
res denote the i-th DiT block

outputs of the base and residual models, respectively.
Then the composed output at level i can be written
as F i

base(x
′,y′1:k) + Z(F i

res(x
′,y′1:M )), where x′ and y′1:M

are layer inputs. Similar to Zhang et al. [47], Z is a zero-
initialized layer to avoid harmful updates at the start of
the training and to ensure that gradient updates to the
residual model improve the predictions of the composed
model over πbase. Crucially, we find that preserving
the diversity of πbase is essential: overfitting the base
model leaves little residual signal to learn, reducing
generalization. Our experiments show that selecting the
πbase checkpoint with the lowest validation loss provides
a good foundation for residual learning. Our residual
model is structured following the Vision Transformers
architecture [9]. In πres, all observational modalities are
passed through self-attention layers after encoding. Our
visual residual model encodes camera images into a
single patch to reduce computational overhead. Complete
implementation details and architectural ablations are
provided in Appendix D and H respectively.

IV. SIMULATION EXPERIMENTS

We train and evaluate FDP and related baselines in
ten tasks of RLBench [18] and four tasks of Adroit
[27] and Robomimic [23] each. More details in the

Fig. 2: Architectural representations for [a] diffusion pol-
icy that jointly conditions on all observational modalities,
[b] simple FDP architecture that composes the score
outputs from πbase and πres and [c] FDP architecture with
block-wise composition with a layer Z applied on πres.

Appendix E and our webpage https://fdp-policy.github.
io/fdp-policy/.

Baselines. For evaluation of sample efficiency in vi-
suomotor tasks, we compare against several approaches
that differ in the way in which they probabilistically
model generative policy learning. However, for all ap-
proaches, we choose DiT-small (∼90M) [24] as our
model architecture. We implement Diffusion Policy [5]
using DiT, referred to as DP-DiT in our results. For
comparison, we also include UNet [31] implemented
by Chi et al. [5] in our baselines as DP-UNet. We
reformulate POCO [42] to compose the modalities of
proprioception yr and vision yc. We train the motion
πbase and vision πres models independently, prior to
sampling from the composed distribution [10] using
ϵ(xt,y

r,yc, t) = ϵ̂ϕ(xt,y
r,yc, t) + λ ∗ ϵ̂θ(xt,y

r, t). Here,
λ = 0.1 based on POCO’s ablations [42]. We also
report results for classifier-free guidance [15] as CFG,
where we train a single model and switch out the vision
modality with a probability of 0.2. We then sample using
ϵ(xt,y

r,yc, t) = λ1 ∗ ϵ̂θ(xt,y
r,yc, t) + λ2 ∗ ϵ̂θ(xt,y

r,ϕ, t),
where we set λ1 = 1.1 and λ2 = 0.1, as suggested
by [15]. For real-world and distractor experiments in
simulation, we compare against DP-DiT.

Research Question 1: Can task-specific prioritization
of modalities using FDP lead to sample efficiency
gains in learning visuomotor tasks? Prioritization of
proprioception using the FDP framework outperforms
all baselines in four tasks of RLBench across different
number of demonstrations and three Adroit tasks as
shown in Figure 3. In RLBench, FDP achieves 20%
higher performance on average with 10 demonstrations
and 10% higher performance on average with 100
demonstrations over the strongest baseline. FDP results
in sample-efficient policies, especially with low number
of demonstrations as the model is able to attend strongly
to proprioception, only learning a residual for the visual
observations. Note that a fully trained πbase motion model
on 100 demonstrations fails in these tasks in isolation,
implying that vision is required to complete these tasks

https://fdp-policy.github.io/fdp-policy/
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Fig. 3: Evaluation for FDP and baselines on four RLBench and four Adroit tasks. FDP results in sample-efficient
policies at low number of demonstrations. More plots in Appendix F.

successfully. In the Adroit environments results shown
in Appendix F, proprioception prioritized FDP performs
better by ∼10% on average over DP-DiT for Door,
Pen and Hammer tasks. For the Relocate task, which
involves grasping a ball placed randomly on the table
and relocating it to a random goal location, the robot
action is strongly influenced by the environment state
specifying the ball and the goal location. Hence, learning
a motion πbase does not work in favor of improving
policy performance, as the effect of the state of the
environment is learned as a residual over πbase. Prioriti-
zation of proprioception will lead to sample-efficiency in
repetitive tasks. Tasks that correlate heavily with robot
proprioception are not uncommon as the robot is solving
them in the first person view, and can move close to the
object if required. More results on these and six other
RLBench tasks in Appendix F.

Research Question 2: Does learning the visual modal-
ity as a residual in the FDP framework result in
robustness to distractors and appearance changes?
We present the results of the policy evaluations in the
distractor environments in Table I.1. Both DP-DiT and
FDP are trained on 100 demonstrations collected in the
original environment and evaluated in three settings: the
original environment, an environment augmented with
distractors, and an environment with visual modifications
to the manipulated objects. FDP significantly outper-
forms DP-DiT in both distractor-augmented and visually
modified environments by more than 40%. Additionally,
we further collect five demonstrations in each modified
environment to investigate the benefits of few-shot adap-
tation to out-of-distribution data. Notably, FDP responds
more effectively to additional demonstrations in the
modified settings, improving it’s performance by 15% on
average over DP’s 10%. In particular, FDP updates only
the residual model πres with new demonstrations, ad-
justing the conditional distribution on visual modalities
p(yc|x, yr) without modifying the full conditional action
distribution p(x|yr, yc). We extend this setting to point
clouds and learn a visual residual on DP3 [46], as com-
pared to DP3 with RGB inputs. Point clouds are sample-

efficient for policy learning as they effectively encode
the geometric structure of the scene in a single modality
[46, 49, 19]. However, our distractor experiments show
that FDP with a visual residual learned over DP3 is
∼ 20% more performant than DP3 with RGB inputs.
Further experimental details are in Appendix F.

Research Question 3: How sensitive is the visuomotor
task performance to prioritization of propriocep-
tion? In visuomotor tasks, prioritizing proprioception
over learning the full conditional distribution can be
advantageous when the object placement diversity is low
or when robustness to visual distribution shifts is criti-
cal. To demonstrate this, we construct three RLBench
environments for a block-picking task, each featuring
an increasingly larger object placement area. The results
are presented in Table I.2. As expected, FDP is sample-
efficient and outperforms DP-DiT across all variation
scales with only 10 demonstrations. However, with in-
creasing number of demonstrations, DP-DiT eventually
surpasses FDP at larger variation scales. Notably, DP-
DiT still fails when visual distractors are introduced,
whereas FDP remains robust and outperforms DP-DiT
even at higher scales of task-variation in distractor-
augmented environments. We also evaluated the per-
formance of DP-DiT and FDP for fine-manipulation
tasks on the Robomimic dataset. Although FDP is more
sample efficient for the tasks of Lift and Can, it
achieves a lower success rate than DP-DiT for Square
and Toolhang, as shown in Table I.3. This is to be
expected, as fine-manipulation tasks present a bottleneck
in the joint state-action distribution, and FDP factorizes
the distribution into components where some modalities
are learned as residuals over the others.

V. REAL-WORLD EXPERIMENTS

We evaluate FDP and the DP-DiT baseline across four
real-world domains and report their task success rates.
The domains are – Close Drawer as a simple task
where the robot has to push the drawer; Put Block in
Bowl that assesses the policy’s ability to perform precise
pick-and-place actions; Pour in Bowl to evaluate the



Table 1.1: Robustness to Visual Distractors (100 demos)
(FDP significantly improves generalization to visual changes)
Task Environment DP-DiT FDP

OpenBox

Original 98.3 ± 1.5 91.3 ± 4.5

Zero-shot color 43.3 ± 2.5 46.7± 1.5

5 demos color 34.7 ± 3.5 76.7 ± 0.6

Zero-shot distractors 1.7 ± 2.1 16.7± 2.1

5 demos distractors 42.3 ± 4.0 53.3 ± 2.3

Basketball
in Hoop

Original 38.7 ± 4.2 63.3 ± 3.8

Zero-shot color 29.0 ± 8.7 63.0 ± 1.0

5 demos color 13.0 ± 0.0 45.0 ± 2.6

Zero-shot distractors 0.7 ± 1.2 56.3 ± 3.2

5 demos distractors 2.7 ± 1.2 39.7 ± 4.9

Open Door

Original 44.7 ± 4.2 65.0 ± 2.6

Zero-shot color1 0.0 ± 0.0 14.3 ± 3.1

5 demos color1 17.7 ± 3.1 52.0 ± 7.2

Zero-shot color2 0.3 ± 0.6 30.7 ± 2.5

5 demos color2 20.0 ± 5.2 53.7 ± 3.8

Table 1.2: Block Pick Success Rates
(FDP performs better in tasks with less variation.)

Variations Model 10 demos 50 demos Distractors

Small
FDP 73.7 ± 3.8 98.7 ± 1.5 99.3 ± 0.6

DP-DiT 29.7± 3.1 95.3± 3.2 0.0± 0.0

Medium
FDP 21.3 ± 3.5 55.0± 2.6 58.3 ± 3.1

DP-DiT 12.0± 1.0 69.0 ± 7.0 2.0± 1.0

Large
FDP 6.3 ± 3.1 20.3± 3.5 0.7± 1.2

DP-DiT 3.3± 0.6 45.7 ± 7.1 0.0± 0.0

Table 1.3: Robomimic Lowdim Task Success Rates (100 demos)
(Evaluating FDP at precise and long-horizon manipulation.)

Task DP-DiT CFG POCO FDP

Lift 99.0± 1.7 98.7± 0.6 98.7± 1.5 99.7± 0.6

Can 99.0± 1.0 98.7± 1.5 98.7± 1.5 99.7± 0.6

Square 80.3 ± 4.6 80.0 ± 3.0 76.3± 6.0 58.0± 6.6

Toolhang 60.0 ± 7.5 60.7 ± 3.5 55.7± 7.5 45.7± 3.8

TABLE I: Tests for robustness and the effects of factorization across domains.

policy’s dexterity in operating near joint limits and Fold
Towel to assess effectiveness in manipulating deformable
objects.

We collect 50 demonstrations per domain on a Franka
FR3 robot using a 6D space mouse, recording both
proprioceptive and visual observations from two cam-
eras—one mounted on the gripper and a static cam-
era covering the workspace. The trained policies are
evaluated on four task variations in each domain: (a)
default: an in-distribution setup matching the condi-
tions used during demonstration collection; (b) color:
the object’s color is altered to test robustness to visual
appearance changes; (c) distractor: novel, unseen
objects such as vegetation props and soft toys are added
to the scene to introduce clutter; and (d) occlusion:
visual input is intermittently blocked during policy roll-
out to simulate partial observability. Figure 8 shows
different task domains and their variations used in our
experiments. More details on the robot system setup can
be found in Appendix G. We use 10 rollouts in each
experiment and report the task success rate as shown in
Table II.

Task Domain default color dist. occl.
DP FDP DP FDP DP FDP DP FDP

Close Drawer 90 90 90 90 10 80 0 80
Put Block in Bowl 80 80 0 60 0 60 10 60
Pour in Bowl 70 80 40 80 20 60 10 50
Fold Towel 40 60 40 70 30 70 10 50

TABLE II: Success rates (%) of Diffusion Policies (DP)
and Factorized Diffusion Policies (FDP) across real-
world tasks with 10 rollouts per condition.
Result Analysis. We find that FDP is robust to dis-
tribution shifts in the environment. DP regularly pro-

duces unachievable robot actions under distractor
and occlusion settings, often triggering safety stops,
resulting in task failure. In contrast, FDP guided by its
motion prior, consistently generates stable actions even
under severe occlusions and cluttered scenes, yielding
an average absolute performance improvement of 40%
over DP. In the default experiment we observe that
the FDP policy outperforms DP in the pouring and towel-
folding tasks, which require precise object manipulation.
With just 50 demonstrations, DP overfits in these fine-
grained tasks due to limited motion diversity, whereas
FDP, leverages its residual guidance and effectively
learns robust policies.

VI. CONCLUSION

We present Factorized Diffusion Policies (FDP), a novel
theoretical framework for prioritization of observation
modalities in policy learning. We provide probabilistic
grounding for diffusion policy learning and reveal the
pitfalls of learning a full conditional on all the obser-
vational modalities. FDP decouples the modalities and
proposes a framework for their selective prioritization.
We derive a novel loss function to realize the decoupling
of modalities and support it with a novel architecture
for efficient training. Through extensive experiments,
we demonstrate several benefits of modality prioritiza-
tion, including improved sample efficiency and increased
robustness to visual distractors and camera occlusions
when learning a residual for vision. FDP opens new
avenues for future research, such as scalable integration
of diversely sourced observational modalities for robot
policy learning. Finally, our real-world experiments high-
light that FDP maintains strong performance even under
significant visual disruptions, outperforming diffusion
policies by over 40%.



VII. LIMITATIONS

FDP is a theoretical framework to decouple observational
modalities for robot policy learning. Predominantly, we
present results for visuomotor tasks, but our method is
generic and can be extended to other modalities. We see
the following issues with our FDP framework –

A. Prioritizing Modalities

We focus on the benefits and pitfalls of prioritizing
proprioception and alternatively learning a residual for
vision in our experiments. However, for applications in a
broader scope, the choice of modalities to be prioritized
will need to be studied and is not answered in this
work. Understanding which modality to prioritize for a
particular task can be a challenging question for diffusion
models in general and might be severly task dependent.
This might indicate that there might be an inference time
choice of composing modality that an agent might have
to make.

B. Factorizing modalities is not a general solution for
all tasks

As we show in our experiments, decoupling modalities
may not be the right choice for every task or skill. This
is because some tasks require the full joint distribution
of observations. We also want to point out here that
it is challenging to know whether a task requires the
full joint distribution or the factored distribution in a
specific prioritized order. Future approaches could learn
to automatically attend on the right modality or the joint
distribution, much like humans do.

C. Architectural Choices

Moreover, the framework can also benefit from further
architectural improvements that realize a better trade-off
between the strength of the guidance imparted by the
residual model πres and its robustness to perturbations
in its inputs. The current training setup requires a two-
step process for learning πbase and πres that presents
a time and computational overhead over training stan-
dard diffusion policies which might be cumbersome at
deployment.

D. Baselines outside of Diffusion based policy mod-
els

In this work we only compare to diffusion based policy
models as we are attempting to improve their robustness
and extend their capabilities of factorization. However,
a large scale comparison against different type of policy
models is left to be done. For now we do not think
comparisons against non-diffusion policy types is critical
but it is desirable to understand when to use which type
of policy for a robot.

E. Large Vision Action Models

There are large scale vision action models that can per-
form tasks specified by language in visual environments
sometimes even zero shot. Here we are studying how
to learn individual skills using diffusion based behavior
cloning approaches. These skills might then be used in
a larger stack of a vision-action model. The question
of sample efficiency and robustness to distractors will
always be important independent of the scale of the
models themselves.
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APPENDIX B
EXTENDED BACKGROUND AND RELATED WORKS

A. Classifier Guided Diffusion

Due to the relative abundance of unlabeled data such
as images, diffusion or score-based models are trained
to learn single-modality distributions such as those
on image pixels [16, 33, 34]. Classifier guided dif-
fusion [6] received considerable attention due to its
ability to condition pre-trained generative models on
class labels to sample images belonging specific cat-
egories. Using Bayes’ theorem we can sample from
a class y by decomposing the conditional score at
time step t into the classifier gradient and the uncondi-
tional score ∇xt

log p(xt|y;θ,ϕ) = ∇xt
log p(xt;θ) +

∇xt
log p(y|xt;ϕ). However, classifier guided diffusion

needs an explicit classifier trained on noisy samples to
estimate the gradients ∇xt log p(y|xt;ϕ).

B. Sample Efficiency In Robot Learning

Sample efficiency is of primary importance in robotics,
as scaling multimodal data is difficult and the number
of variation of tasks is unbounded. While generative
model families such as diffusion [5], score-based models
[28], stochastic interpolants [3], and flows [48] have
been applied, they do not directly address this limitation.
Although FDP factorizes observational modalities for
diffusion policies, it is not limited to the choice of gen-
erative modeling family. Several works have specifically
improved the sample efficiency of diffusion models. Ze
et al. [46] use point clouds to show generalization in 3D
space with fewer data, but rely on high-quality depth in-
formation. Several works exploit task-space symmetries
by incorporating SO(2) [41] or SIM(3) [43] equivariance
into diffusion models to boost sample efficiency; how-
ever, are limited in terms of task selection.

C. Compositional Robot Learning

Composition of diffusion models [10] has emerged as a
promising framework for solving novel tasks by com-
bining existing solutions. Prior work composes learned
constraints to generalize to new task combinations in
manipulation [20] and planning [44], or composes dis-
tributions across heterogeneous modalities for tool use
[42]. However, all the previous works compose learned
or analytical distributions, limiting their application to
combinations of existing solutions. In the FDP frame-
work, we instead learn a residual over an existing policy
that, when composed together, results in samples corre-
sponding to the data distribution.

D. Robustness to Visual Distractors

Existing behavioral cloning approaches [5] lack robust-
ness to visual distractors and artifacts such as camera

11



viewpoint changes. Recent augmentation-based meth-
ods improve generalization by generating semantically
modified images [45] or retargeting behaviors to novel
situations [4], but they require substantial computational
resources and remain vulnerable to visual failures like
temporary camera blackouts or dynamic scene changes.
In contrast, FDP with prioritized proprioception achieves
robustness to such perturbations without requiring data
augmentation, as demonstrated in our real-world experi-
ments. Several recent works make policy learning robust
to distractors by imposing constraints such as object and
robot point tracking [13], building digital twins [37],
and generating object proposals [50]. However, FDP
is a novel reformulation of learning conditional action
diffusion models, while being naturally robust, which
may further benefit from these works.

APPENDIX C
THEORETICAL PROOFS

We prove the FDP loss for learning a residual model,
presented as Equation 6. Our aim is to decouple the
different observational modalities yk, 1 ≤ k ≤ M for
task-based prioritization. Let πbase be a diffusion policy
trained on k prioritized modalities over N demonstra-
tions using the diffusion loss of Equation 3. Instead of
learning a full action conditional, we propose to learn
a residual over πbase for the subsequent modalities. The
score of the conditional action distribution including the
k+1:M modalities p(x|y1:M ), where y1:k ≡ y1, ..,yk,
can be written using Bayes’s theorem at diffusion time-
step t as follows:

∇xt
log p(xt|y1:M ;θ,ϕ) = ∇xt

log p(yk+1:M |xt,y
1:k;ϕ)

+∇xt log p(xt|y1:k;θ)

Here ∇xt log p(xt|y1:k;θ) is the score of the model
trained on the prioritized k observational modalities,
while ∇xt

log p(yk+1:M |xt,y
1:k;ϕ) corresponds to the

score of the classifier for the modalities yk+1:M . The
method proposed by classifier guided-diffusion [6] to
explicitly train a classifier p(yk+1:M |xt,y

1:k) on the
noisy samples of xt and y1:k is impractical in our
setting due to the high dimensionality and continuity of
observational modalities such as images, which differ
significantly from discrete class labels.

The central idea of this work is to instead di-
rectly parametrize the gradient of the classifier
∇xt

log p(yk+1:M |xt,y
1:k;ϕ) using a neural net-

work, which we refer to as the residual model
πres, rather than to learn a classifier and then
obtain its gradients. To learn the score of the
residual model, we employ score matching [35].

DF = Epα,τ (xt,ỹ1:M )

[
1

2

∥∥∥∇xt
log pϕ(ỹ

k+1:M |xt, ỹ
1:k)

−∇xt
log pα,τ (ỹ

k+1:M |xt, ỹ
1:k)

∥∥∥2
2

]
(9)

Here, observational modalities y1:M can be noised with
a Gaussian kernel N (ỹ;y, τ2I) of variance τ2 that is
small enough such that pτ (ỹi) ≈ p(yi). This smoothing
ensures that the resulting distribution has a continuous
and differentiable density that satisfies the regularity
conditions required for score matching [38]. However,
Chao et al. [2] show that the true score is difficult to
estimate for large datasets and derive the denoising like-
lihood score matching (DLSM) objective for conditional
distributions, which forms the basis of theorem III.2,
proved in Appendix C-C.



A. Instantiating FDP for Different Modalities

We now provide concrete implementations of FDP for
visual and point-cloud tasks. In practice we observe that
noising the modalities does not affect the performance,
and drop the notation going forward. Existing diffusion
models trained as visuomotor polices learn the score for
the conditional distribution p(x|yr,yc), where yr corre-
sponds to proprioceptive observations and yc correspond
to visual observations from cameras. For proprioception-
prioritized FDP, we decouple these observational modal-
ities and instead learn the scores for a motion πbase:
p(x|yr) and a vision πres: p(yc|x,yr). The equations of
diffusion loss for πbase and πres can be written as follows.

Lt
base(θ) = Eq(x0,yr)N (ϵ0;0,I)

[
∥ϵ0 − ϵ̂θ(xt,y

r, t)∥22
]

(10)

Lt
res(ϕ) = Ex0,y

r,yc∼pτ

ϵ0∼N (0,I)

[
1

2

∥∥∥∥ ϵ0 − ϵ̂ϕ(y
c,xt,y

r, t)
−ϵθ(xt,y

r, t)

∥∥∥∥2
2

]
(11)

Similarly, we can learn a vision πres for a point-
cloud πbase as shown in Equation 13. Here, yp de-
notes the point cloud modality. Note that we de-
fine a modality in terms of how it is encoded into
the model. The images from different cameras may
then correspond to different modalities, but are rep-
resented in Equations 11 and 13 as a single entity.

Lt
base(θ) = Ex0,y

r,yc∼q
ϵ0∼N (0,I)

[
∥ϵ0 − ϵ̂θ(xt,y

r,yc, t)∥22
]

(12)

Lt
res(ϕ) = Ex0,y

r,yc,yp∼pτ

ϵ0∼N (0,I)

[
1

2

∥∥∥∥ ϵ0 − ϵ̂ϕ(y
p,xt,y

r,yc, t)
−ϵθ(xt,y

r,yc, t)

∥∥∥∥2
2

]
(13)

B. Proof of Diffusion Loss for Full Conditional Action
Distribution

We show that a conditional diffusion process as de-
fined by Dhariwal and Nichol [6] results in the loss
of Equation 3 [5] being a maximizer of the variational
lower bound on the log-likelihood of the conditional data
distribution log q(x|y).
Lemma C.1. The diffusion loss function Lt(θ) as de-
fined in Equation 3, in expectation over the time-steps
1 ≤ t ≤ T , maximizes the variational lower bound
on the log-likelihood of the conditional data distribu-
tion log q(x|y), under a Markovian noising process
q̂(xt|xt−1) and the conditional reverse transition kernel
as q̂(xt−1|xt,y).

Here, we derive the diffusion loss function for the
conditional distribution p(x|y) instead of only p(x).
A parallel derivation for conditional variational auto-
encoders can be found in Doersch [8]. Following Dhari-
wal and Nichol [7], we start with a conditional Marko-

vian noising forward process q̂ similar to q(xt|xt−1) =
N (xt;

√
αtxt−1, (1 − αt)I), and define the follow-

ing:

q̂(x0) := q(x0) (14)
q̂(xt+1|xt,y) := q(xt+1|xt) (15)

q̂(x1:T |x0,y) :=
T∏

t=1

q̂(xt|xt−1,y) (16)

We now reproduce some results that will be used later
in the derivation of diffusion loss for conditional distri-
butions. Dhariwal and Nichol [7] also show that

q̂(y|xt,xt+1) = q̂(xt+1|xt,y)
q̂(y|xt)

q̂(xt+1|xt)
(17)

= q̂(xt+1|xt)
q̂(y|xt)

q̂(xt+1|xt)
(18)

= q̂(y|xt) (19)

Moreover, the unconditional reverse transition kernels
can be shown to be equal using Bayes theorem, given
Equations 14 and 15: q̂(xt|xt+1) = q(xt|xt+1). Dhari-
wal and Nichol [7] use the result from Equation 19
to show the following for conditional reverse transition
kernels.

q̂(xt|xt+1,y) =
q̂(xt,xt+1,y)

q̂(xt+1,y)
(20)

=
q̂(xt,xt+1,y)

q̂(y|xt+1)q̂(xt+1)
(21)

=
q̂(xt|xt+1)q̂(y|xt,xt+1)q̂(xt+1)

q̂(y|xt+1)q̂(xt+1)
(22)

=
q̂(xt|xt+1)q̂(y|xt,xt+1)

q̂(y|xt+1)
(23)

=
q(xt|xt+1)q̂(y|xt)

q̂(y|xt+1)
(24)

Further, we can show the following using Equations 15
and 16 and the Markovian noising process. It states that
the joint distribution of the noised samples conditioned
on y and x0 are the same for both q̂ and q.

q̂(x1:T |x0,y) =
T∏

t=1

q̂(xt|xt−1,y) (25)

=
T∏

t=1

q(xt|xt−1) (26)

= q(x1:T |x0) (27)

We adapt the derivation of diffusion loss from Luo
[22] to work with conditional distributions by maxi-
mizing the log-likelihood of the conditional data dis-
tribution log p(x|y) leading to evidence lower bound
(ELBO).

log p(x|y) = log

∫
p(x0:T |y)dx1:T (28)

= log

∫
p(x0:T |y)q̂(x1:T |x0,y)

q̂(x1:T |x0,y)
dx1:T (29)



= logEq̂(x1:T |x0,y)

[
p(x0:T |y)

q̂(x1:T |x0,y)

]
(30)

≥ Eq̂(x1:T |x0,y)

[
log

p(x0:T |y)
q̂(x1:T |x0,y)

]
(31)

The ELBO can be further simplified as follows

log p(x|y) ≥ Eq̂(x1:T |x0,y)

[
log

p(x0:T |y)
q̂(x1:T |x0,y)

]
= Eq̂(x1:T |x0,y)

[
log

p(xT |y)
∏T

t=1 pθ(xt−1|xt,y)∏T
t=1 q̂(xt|xt−1,y)

]

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)

+ log

T∏
t=2

pθ(xt−1|xt,y)

q̂(xt|xt−1,x0,y)

]

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)

+ log

T∏
t=2

pθ(xt−1|xt,y)
q̂(xt−1|xt,x0,y)q̂(xt|x0,y)

q̂(xt−1|x0,y)


= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(x1|x0,y)

+ log
q̂(x1|x0,y)

q̂(xT |x0,y)
+ log

T∏
t=2

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]

= Eq̂(x1:T |x0,y)

[
log

p(xT |y)pθ(x0|x1,y)

q̂(xT |x0,y)

+

T∑
t=2

log
pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
= Eq̂(x1|x0,y) [log pθ(x0|x1,y)]

+ Eq̂(xT |x0,y)

[
log

p(xT |y)
q̂(xT |x0,y)

]
+

T∑
t=2

Eq̂(xt,xt−1|x0,y)

[
log

pθ(xt−1|xt,y)

q̂(xt−1|xt,x0,y)

]
= Eq̂(x1|x0,y) [log pθ(x0|x1,y)]︸ ︷︷ ︸

reconstruction term

−DKL(q̂(xT |x0,y) ∥ p(xT |y))︸ ︷︷ ︸
prior matching term

−
T∑

t=2

Eq̂(xt|x0,y) [︸ ︷︷ ︸
denoising matching term

DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))]︸ ︷︷ ︸
(32)

The reconstruction term is ignored for training [16, 22],
and the prior matching term does not have any trainable
parameters. We further simplify the denoising matching
term using Equation 24 further conditioned on x0.

−
T∑

t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0,y) ∥ pθ(xt−1|xt,y))]

= −
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y) [log q̂(xt−1|xt,x0,y)

− log pθ(xt−1|xt,y)]]

= −
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y) [log q̂(xt−1|xt,x0)

+ log
q̂(y|xt−1,x0)

q̂(y|xt,x0)
− log pθ(xt−1|xt,y)

]]
= −

T∑
t=2

Eq̂(xt|x0,y) [DKL(q̂(xt−1|xt,x0) ∥ pθ(xt−1|xt,y))]

−
T∑

t=2

Eq̂(xt|x0,y)

[
Eq̂(xt−1|xt,x0,y)

[
log

q̂(y|xt−1,x0)

q̂(y|xt,x0)

]]
(33)

Note that the expectation is taken over a distribution
independent of y, since q̂(x1:T |x0,y) = q(x1:T |x0), as
shown in Equation 27. It is easy to see that the first term
in the resulting expression is the KL divergence between
the model parameterized with the condition y and the
unconditional reverse transition kernel, leading to the
popularly used diffusion loss of Equation 3. However, an
additional term is introduced for the conditional diffusion
process. This minimizes the difference in the likelihood
of the labels between consecutive denoising steps. How-
ever, since it does not have trainable parameters, we will
ignore it.

C. Proof for FDP Loss

Theorem C.2. Explicit score matching for
∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k), as expressed in

Equation 5 with x noised with the diffusion kernel
N (xt;

√
αtx0, (1−αt)I), is equivalent to the following

loss:

Lt
res(ϕ) = Ex0,y

1:M ,ỹ1:M∼pτ

ϵ0∼N (0,I)

[
1

2

∥∥∥∥ ϵ0 − ϵθ(xt, ỹ
1:k, t)

+ϵ̂ϕ(xt, ỹ
1:M , t)

∥∥∥∥2
2

]
(34)

Here ϵθ(xt, ỹ
1:k, t) is fixed and optimal such

that ϵθ(xt, ỹ
1:k, t)=E[ϵ0|xt, ỹ

1:k] and estimates√
1− ᾱt ∗ ∇xt

log p(xt|ỹ1:k). The parameterized
model ϵ̂ϕ(xt, ỹ

1:M , t) is learned to estimate√
1− ᾱt ∗ ∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k).

Chao et al. [2] in their insightful work for
score-based models, show that the following
two losses differ only by a constant.

DF (pϕ(ỹ|x̃)∥pα,τ (ỹ|x̃)) = Epα,τ (x̃,ỹ)

[
1

2

∥∥∥∥ ∇x̃ log pϕ(ỹ|x̃)
−∇x̃ log pα,τ (ỹ|x̃)

∥∥∥∥2
2

]
(35)

LDLSM (ϕ) = Epα,τ (x,x̃,y,ỹ)

[
1

2

∥∥∥∥ ∇x̃ log pϕ(ỹ|x̃) +∇x̃ log pθ(x̃)
−∇x̃ log pα(x̃|x)

∥∥∥∥2
2

]
(36)



We extend their proof for diffusion models and mul-
tiple conditionals below. Explicit Score Matching loss
between the residual model and the true score of the
classifier can be further expanded as:

Dt
F (pϕ(ỹ

k+1:M |xt, ỹ
1:k)||pα,τ (ỹk+1:M |xt, ỹ

1:k)) (37)

= Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k)

−∇xt log pα,τ (ỹ
k+1:M |xt, ỹ

1:k)||22
]

(38)

= Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k)||22
]

+ Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt

log pα,τ (ỹ
k+1:M |xt, ỹ

1:k)||22
]

− Epα,τ (xt,ỹ1:M )

[〈
∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k),

∇xt
log pα,τ (ỹ

k+1:M |xt, ỹ
1:k)

〉]
(39)

= Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k)||22
]

+ Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt

log pα,τ (ỹ
k+1:M |xt, ỹ

1:k)||22
]

− Epα,τ (xt,ỹ1:M )

[〈
∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt
log pα,τ (xt|ỹ1:k, ỹk+1:M )

〉
−∇xt

log pα,τ (xt|ỹ1:k)
〉]

(40)

= Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt log pα,τ (ỹ

k+1:M |xt, ỹ
1:k)||22

]
+ Epα,τ (xt,ỹ1:M )

[〈
∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt
log pα,τ (xt|ỹ1:k)

〉]
−Epα,τ (xt,ỹ1:M )

[〈
∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),︸ ︷︷ ︸
Term 1

∇xt log pα,τ (xt|ỹ1:k, ỹk+1:M )
〉]

(41)

Simplifying the Term 1 further:

− Epα,τ (xt,ỹ1:M )

[
⟨∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt
log pα,τ (xt|ỹ1:M )⟩

]
= −

∫
xt

∫
ỹ1:M

pτ (ỹ
1:M )pα,τ (xt|ỹ1:M )

⟨∇xt
log pϕ(ỹ

k+1:M |xt, ỹ
1:k),

∇xtpα,τ (xt|ỹ1:M )

pα,τ (xt|ỹ1:M )
⟩dỹ1:Mdxt

= −
∫
xt

∫
ỹ1:M

pτ (ỹ
1:M )⟨∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt

∫
x0

p0,τ (x0|ỹ1:M )pα,τ (xt|x0, ỹ
1:M )dx0⟩dỹ1:Mdxt

= −
∫
xt

∫
ỹ1:M

pτ (ỹ
1:M )⟨∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k),

∇xt

∫
x0

∫
y1:M

p0,τ (x0|ỹ1:M )pα,τ (xt|x0, ỹ
1:M ,y1:M )·

p(y
1:M |x0, ỹ

1:M )dy1:Mdx0⟩dỹ1:Mdxt

= −
∫
xt

∫
ỹ1:M

∫
x0

∫
y1:M

pτ (x0,xt,y
1:M , ỹ1:M )

⟨∇xt
log pϕ(ỹ

k+1:M |xt, ỹ
1:k),

∇xt
log pα,τ (xt|x0, ỹ

1:M ,y1:M )⟩dy1:Mdx0dỹ
1:Mdxt

= −Epα,τ (x0,xt,y1:M ,ỹ1:M )

[
⟨∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt
log pα(xt|x0)⟩

]
Plugging this back into Equation 41, we get-

DF

(
pϕ(ỹ

k+1:M |xt, ỹ
1:k)

∥∥pα,τ (ỹk+1:M |xt, ỹ
1:k)

)
= Epα,τ (xt,ỹ1:M )

[
1

2

∥∥∇xt
log pϕ(ỹ

k+1:M |xt, ỹ
1:k)

∥∥2
2

]
+ Epα,τ (xt,ỹ1:M )

[
1

2

∥∥∇xt
log pα,τ (ỹ

k+1:M |xt, ỹ
1:k)

∥∥2
2

]
+ Epα,τ (xt,ỹ1:M )

[〈
∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt
log pα,τ (xt|ỹ1:k)

〉]
− Epα,τ (x0,xt,y1:M ,ỹ1:M )

[〈
∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k),

∇xt log pα(xt|x0)

〉]
(42)

Here, Epα,τ (xt,ỹ1:M )

[
1

2
||∇xt log pα,τ (ỹ

k+1:M |xt, ỹ
1:k)||22

]
is a constant. Further, adding the constant
Epα,τ (xt,ỹ1:k)

[
1

2
||∇xt

log pα,τ (xt|ỹ1:k)−∇xt
log pα(xt|x0)||22

]
to Equation 42, we get:

DF

(
pϕ(ỹ

k+1:M |xt, ỹ
1:k)

∥∥ pα,τ (ỹk+1:M |xt, ỹ
1:k)

)
= Epα,τ (xt,ỹ1:M )

[
1

2

∥∥∇xt log pϕ(ỹ
k+1:M |xt, ỹ

1:k)
∥∥2
2

]
+ Epα,τ (xt,ỹ1:M )

[〈
∇xt log pϕ(ỹ

k+1:M |xt, ỹ
1:k),

∇xt log pα,τ (xt|ỹ1:k)

〉]
− Epα,τ (x0,xt,y1:M ,ỹ1:M )

[〈
∇xt

log pϕ(ỹ
k+1:M |xt, ỹ

1:k),

∇xt
log pα(xt|x0)

〉]
+ Epα,τ (xt,ỹ1:k)

[
1

2

∥∥∇xt
log pα,τ (xt|ỹ1:k)

−∇xt log pα(xt|x0)∥22 + C (43)

= Epα,τ (x,xt,y1:M ,ỹ1:M )

[
1

2

∥∥∥∇xt
log pϕ(ỹ

k+1:M |xt, ỹ
1:k)

+∇xt
log pθ(xt|ỹ1:k)−∇xt

log pα(xt|x)
∥∥∥2
2

]
+ C

(44)

Simplifying ∇xt
log pα(xt|x) to −ϵ0/

√
1− ᾱt, where

ϵ0 ∼ N (0, I), and replacing the scores multiplied
to

√
1− ᾱt with their parametrized models we ob-

tain:

Lt
res(ϕ) = Epτ (x,y1:M ,ỹ1:M )Eϵ0∼N (0,I)

[
1

2(1− ᾱt)

∥∥∥ϵ0



−ϵθ(xt, ỹ
1:k, t) + ϵ̂ϕ(ỹ

k+1:M ,xt, ỹ
1:k, t)

∥∥∥2
2

]
+ C

(45)

Here 1/(1 − ᾱt) is a constant and does not affect the
optimization objective at time t. Hence, we show that the
Explicit Score Matching loss in Equation 5 is equivalent
to minimizing the loss Lt

res in Theorem III.2, differing
up to a multiplicative and additive constant.

APPENDIX D
ARCHITECTURE AND IMPLEMENTATION DETAILS

All transformer-based models are trained over 2000
epochs for visual tasks and 3000 epochs for low-
dimensional tasks. Unet [31] is trained over 3000 epochs
for visual tasks and 5000 epochs for low-dimensional
tasks. We train models on visual tasks with a batch size
of 64, and low-dimensional tasks with a batch size of
256. All models are trained on NVIDIA A5000 or A40
GPUs, with training times ranging from 6 to 12 hours
depending on model size and the number of camera
inputs. Our current implementations support an action
prediction latency of ∼50ms for DP-DiT, ∼100ms for
UNet [5] and output composition of models as shown
in Figure 2 [b] and ∼150ms for FDP model shown
in [c]. The codebase will be publicly released upon
acceptance.

DP-DiT. We use DiT-S (∼33M parameters)[24] as the
base architecture, with 12 layers, 6 heads and a hid-
den dimension of 6. Peebles and Xie [24] specifically
show that the conditioning using AdaLn-Zero outper-
forms other forms of conditioning such as in-context
and cross-attention for image generation. However, we
observe slightly stronger performance when the weights
for the final layer of AdaLn are initialized with a
Gaussian. We use different untrained ResNet-18 (∼12M
parameters)[14] encoders for each camera and also en-
code proprioception using a separate encoder. All en-
coded conditionals across the observation horizon are
concatenated before using AdaLn. The model size con-
ditioned on the input images from 2 cameras is ∼56 M
parameters. All DiT models are trained using a learning
rate of 1e−4 and a weight decay of 1e−3. We also
perform exponential moving average (EMA) to reduce
the variance in training. The same DiT backbone is used
for low-dimensional, visual, and point-cloud tasks. We
use the 100-step DDPM [16] noise scheduler suggested
by Chi et al. [5] implemented using HuggingFace Dif-
fusers [39]. Sampling is performed using 8-step DDIM
[33].

DP-UNet. We use the 1D-UNet [31] implementation
from Chi et al. [5]. UNet is trained using a learning
rate of 1e−4 and a weight decay of 1e−6. Although
the parameter count of the DiT model does not vary

significantly with increasing context length due to self-
attention, that is not the case with UNet. We use a
relatively smaller UNet for low-dimensional tasks and a
UNet with a larger channel width for visual tasks. For an
observation horizon of 3 and an action horizon of 15 for
visuomotor tasks, the parameter count of UNet increases
to (∼336M ), not including the ResNet weights. UNet
uses FiLM [25] layers for conditioning on a single
embedding, which is built for different visual inputs and
proprioception similar to DP-DiT.

FDP. We experiment with several implementations of
FDP in this paper, as shown in Figures 2 [b] and [c].
The simplest implementation shown in [b] simply adds
the output of the base and the residual model, with
the base kept frozen. The architectures of these models
are exactly identical to DP-DiT, except that they are
conditioned on different modalities. For Figure 2 [c] used
to present the results in the paper, the architecture of the
base model is the same as that of DP-DiT. However,
the residual model is designed similarly to the ViT [9]
architecture. Since we do not denoise the inputs, we
encode and pass all the inputs across the observation
horizon through self-attention. We condition them on
noisy actions using AdaLn. The images are encoded
using patch embedding, where we keep the patch size
equal to the size of the image to reduce the number
of parameters. Crucially, we apply a zero layer on the
block outputs of the residual model that are added to the
corresponding blocks of the base model. We implement
two variants of the zero-layer: a zero-initialized convo-
lutional layer and a zero-initialized linear layer. For the
convolutional layer, πbase learned on proprioception is of
∼30M parameters and the residual model πres with two
camera image inputs is of ∼55M parameters. However,
the linear zero layer bloats the residual model’s size
to ∼290M . Other hyperparameters such as the learning
rate, weight decay, and the noise schedule are the same
as DP-DiT.



APPENDIX E
EXPERIMENTAL SETUP

Environments. We evaluate our approach across more
than 10 tasks from RLBench [18] and all four tasks
from the Adroit dexterous manipulation suite [12], as
illustrated in Figures 4 and 5. RLBench offers a di-
verse set of tasks and includes a built-in planner for
demonstration collection. We train visuomotor policies in
RLBench using a multi-camera setup that records 96×96
RGB images, with joint positions as the action modality.
To assess robustness under visual distribution shift, we
introduce appearance modifications to the environment,
shown in Figure 6. Our experiments on RLBench use
five camera views (wrist, front, overhead, right-shoulder,
and left-shoulder), an observation horizon of 2, and an
action horizon of 16.

The Adroit benchmark comprises high-dimensional hand
manipulation tasks performed using a 24-DoF an-
thropomorphic hand (see Figure 4). It includes four
tasks—Door, Hammer, Pen, and Relocate—that demand
fine motor control and complex object interaction. We
modify the success condition of the Hammer task, re-
quiring the nail to be within a distance of 0.2 (instead
of 0.1) from the board. Each Adroit task is represented
by a task-specific low-dimensional state vector. We use
an observation horizon of 3 and an action horizon of 15
across all Adroit experiments.

We also evaluate on the Robomimic dataset [23], which
provides low-dimensional state observations and uses
an action space defined as the change in end-effector
position and orientation (axis-angle). The benchmark
includes four tasks: Lift, Can, Square, and Toolhang,
with the latter two requiring higher precision. Following
Chi et al. [5], we use an observation horizon of 1
and an action horizon of 10 for all Robomimic experi-
ments.

Fig. 4: RLBench and Adroit Tasks considered in the
main paper.

Evaluation Methodology. Our sample efficiency results
are reported as the mean and standard deviation of the
success rates over 100 rollouts for 3 seeds each (total

Fig. 5: Additional RLBench tasks considered in our
experiments

of 300 rollouts). Our results for distractor experiments
in simulation and our ablations are averaged over 150
rollouts across 3 seeds for each variation of the envi-
ronment. For the real-world experiments, we report the
task success rate over 10 rollouts for the original and
modified environments with distractors and appearance
changes. We provide experimental configurations for
each environment in Table III.



Suite Task
Env. Obs.

Dim.
Rob. Obs.

Dim.
Action
Dim.

Max.
Len.

# Train
Demos

Obs/Act
Horizon

Robomimic

Lift 10 9 7 400 10/50/100 o1h10
Can 14 9 7 400 10/50/100 o1h10
Square 14 9 7 400 10/50/100 o1h10
Toolhang 44 9 7 700 10/50/100 o1h10

Adroit

Door 12 27 28 475 22 o2h16
Hammer 13 33 26 475 22 o2h16
Pen 21 24 24 475 22 o2h16
Relocate 9 30 30 475 22 o2h16

RLBench Various – 8 8 300/600 10/50/100 o3h15

Real-World Various – 9 9 400 50 o3h15

TABLE III: Environment specifications including observation, robot and action dimensions, max trajectory lengths,
and number of training demonstrations. The final column (Obs/Act Horizon) denotes the number of observation
frames (oN) and action steps (hM) used in training. For RLBench and Real-world settings, the environment
observation dimension depends on the number of cameras (1/3/5) and embedding size (512).

Fig. 6: RLBench tasks with appearance changes and distractors

APPENDIX F
EXTENDED SIMULATION RESULTS

Research Question 1: Can task-specific prioritization
of modalities using FDP lead to sample efficiency
gains in learning visuomotor tasks?

In this section, FDP refers to the prioritization of
proprioceptive inputs, with vision modeled as a resid-
ual—unless explicitly stated otherwise. The results for
RLBench, corresponding to Figure 3, are presented in
Table IV. Additional results for the two-camera setup
(wrist and front views) are provided in Table V. FDP
with prioritized proprioception consistently outperforms
DP-DiT across a range of tasks, particularly in low-data

regimes. For reference, we include the performance of
a motion-only model (trained solely on proprioception
with 100 demonstrations) beneath each task name. The
poor performance of these motion models highlights
the importance of visual information for successful task
execution. Although FDP learns a residual for vision, it
effectively extracts visual correlations to guide the mo-
tion model, leading to superior performance compared
to learning the full conditional distribution (DP-DiT)
directly.

We show the results in the Adroit environments in Table
VI. The results in Table VI have a Success column
that indicates the number of times Success token was
received from the environment within the time-frame of



Task Number
of Demos

DP-DiT DP-UNet CFG POCO FDP

Mean Std Mean Std Mean Std Mean Std Mean Std

OpenBox
MM=17.3

10 21.0 ± 2.0 7.5 ± 0.7 20.3 ± 4.0 27.7 ± 4.9 59.0 ± 4.0
50 86.0 ± 1.7 86.0 ± 1.0 86.0 ± 2.6 87.3 ± 0.6 90.0 ± 2.6

100 98.3 ± 1.5 93.0 ± 1.0 92.3 ± 2.5 98.3 ± 1.5 91.3 ± 4.5

CloseBox
MM=36

10 25.7 ± 5.9 30.0 ± 6.2 19.7 ± 4.7 29.7 ± 3.5 71.7 ± 6.8
50 79.7 ± 1.2 70.0 ± 3.6 75.0 ± 3.5 79.7 ± 1.2 87.7 ± 3.1

100 85.7 ± 1.5 83.7 ± 3.8 88.7 ± 1.5 88.3 ± 1.5 88.3 ± 2.9

OpenDoor
MM=18

10 24.7 ± 4.2 7.7 ± 1.5 12.7 ± 1.5 13.0 ± 4.4 42.0 ± 5.2
50 44.0 ± 1.7 11.3 ± 3.5 22.3 ± 9.3 38.0 ± 5.0 54.7 ± 5.0

100 44.7 ± 4.2 23.3 ± 3.5 60.0 ± 0.0 42.0 ± 2.6 65.0 ± 2.6

CloseDoor
MM=0.3

10 2.0 ± 1.0 3.0 ± 1.0 0.0 ± 0.0 4.3 ± 0.6 9.0 ± 1.7
50 0.0 ± 0.0 7.3 ± 1.5 1.7 ± 0.6 1.7 ± 0.6 6.7 ± 3.5

100 2.7 ± 1.5 8.0 ± 0.0 5.0 ± 0.0 5.0 ± 2.6 9.0 ± 1.0

Basketball
in Hoop
MM=0.7

10 1.7 ± 1.5 2.7 ± 1.5 1.7 ± 1.2 2.0 ± 1.0 10.7 ± 2.5
50 18.0 ± 3.5 17.0 ± 1.0 13.7 ± 5.5 20.7 ± 4.2 47.3 ± 3.2

100 38.7 ± 4.2 34.3 ± 4.2 46.0 ± 4.0 42.7 ± 4.0 63.3 ± 3.8

TABLE IV: Performance results across different RLBench tasks for 10, 50 and 100 demonstrations. The reported
means and standard deviations are computed over 100 rollouts for each of 3 random seeds.

Task #Demos DP-DiT FDP
Mean ± Std Mean ± Std

Turn Tap 10 21.3 ± 6.1 28.7 ± 3.1
50 52.0 ± 1.0 38.3 ± 2.1

Stack Wine 10 2.0 ± 0.0 12.0 ± 9.2
50 41.7 ± 4.0 50.0 ± 2.0

Get Ice from Fridge 10 0.0 ± 0.0 16.7 ± 9.9
50 12.0 ± 2.0 37.3 ± 7.0

Take Tray Out of Oven 10 0.0 ± 0.0 3.0 ± 1.4
50 14.0 ± 5.3 18.0 ± 2.0

Sweep to Dustpan 10 13.3 ± 3.1 51.3 ± 4.2
50 62.0 ± 5.3 77.3 ± 3.1

Water Plants 10 2.7 ± 1.2 18.0 ± 2.0
50 6.0 ± 3.5 55.3 ± 9.0

Open Grill 10 4.7 ± 3.1 10.7 ± 6.1
50 4.0 ± 2.0 30.7 ± 8.1

TABLE V: Success rates (%) on various RLBench tasks
using 10 and 50 demonstrations under a two-camera
configuration. We report mean ± standard deviation over
50 rollouts for each of 3 random seeds.

the rollout. The results shown in Figure 3 correspond to
Success > 1 condition in Table VI. However, since the
nature of the tasks is dynamic, we also report the results
for Success > 25 within the considered rollout time
in Table VI. Notably, prioritization of proprioception
leads to inferior results for the task of Relocate, as it
is strongly dependent on the environment state specifi-
cation of the locations of the ball and the target.

Further, we show results for Robomimic low-
dimensional tasks in Table VII. We see that FDP
is sample efficient for Lift and Can tasks, while
performing poorly on Square and Toolhang as they
require precise manipulation. Our results are further
supported by the poor performance of POCO on these
tasks. Precise manipulation presents a bottleneck in
the state-action distribution, implying that learning the
full conditional will lead to better performance. When
DP-DiT is composed with a motion model as in POCO,
or the vision modality is separated out and learned
as a residual of the motion model, it leads to inferior
results.

Research Question 2: Does learning the visual
modality as a residual in the FDP framework re-
sult in robustness to distractors and appearance
changes?

We provide results for 3 more tasks trained in a two-
camera setting (wrist and front) in Table VIII. Further,
we provide results for learning a visual residual over
DP3 [46] in Table IX. We clearly see that learning a
visual residual over DP3 is robust to visual changes as
compared to a DP3 model that also takes in RGB inputs.
However, we see similar performance as compared to
DP3 in both the default task setting and with visual
appearance changes, as DP3 does not take in RGB
values. This is limiting, as the model is unable to
solve tasks that require differentiation in color. FDP
can flexibly be extended to incorporate color either as
a primary modality or a residual, even with an unequal



Task Success DP-DiT DP-UNet CFG POCO FDP
Door
MM=4

> 1 62.7 ± 4.7 67.3 ± 4.7 42.7 ± 5.5 58.7 ± 4.6 74.3 ± 3.1
> 25 31.3 ± 0.6 30.7 ± 0.6 22.3 ± 7.5 29.0 ± 2.6 45.7 ± 5.8

Pen
MM=22.7

> 1 55.3 ± 10.4 63.3 ± 3.5 67.7 ± 3.5 57.3 ± 0.6 62.3 ± 5.9
> 25 50.3 ± 9.7 57.3 ± 2.5 62.3 ± 0.6 53.0 ± 2.6 56.0 ± 4.4

Hammer
MM=18

> 1 39.0 ± 4.0 47.3 ± 6.0 40.7 ± 2.3 40.7 ± 5.5 51.7 ± 6.4
> 25 38.7 ± 4.5 47.0 ± 6.0 39.0 ± 2.0 40.7 ± 5.5 50.7 ± 6.4

Relocate
MM=2

> 1 88.7 ± 4.5 56.0 ± 7.2 1.3 ± 0.6 82.3 ± 1.2 63.0 ± 6.9
> 25 85.0 ± 5.2 52.0 ± 7.0 0.3 ± 0.6 79.0 ± 3.6 58.7 ± 4.0

TABLE VI: Performance comparison across Adroit tasks for different models. We show performance results for the
successful completion of the task for more than 1 and 25 time steps. The mean and standard-deviation are reported
over 300 rollouts split across 3 different seeds.

Task #Demos DP-DiT DP-UNet CFG POCO FDP

Lift
10 82.3 ± 3.1 98.0 ± 1.7 90.3 ± 1.5 83.3 ± 3.2 96.3 ± 1.5
50 95.3 ± 1.5 100.0 ± 0.0 91.7 ± 1.5 96.3 ± 0.6 99.7 ± 0.6
100 99.0 ± 1.7 99.7 ± 0.6 98.7 ± 0.6 98.7 ± 1.5 99.7 ± 0.6

Can
10 51.3 ± 2.3 43.7 ± 4.0 52.3 ± 3.5 58.3 ± 1.2 79.7 ± 3.5
50 95.0 ± 1.7 93.3 ± 0.6 97.3 ± 3.8 95.3 ± 1.2 98.3 ± 1.2
100 99.0 ± 1.0 98.3 ± 1.5 98.7 ± 1.5 98.7 ± 1.5 99.7 ± 0.6

Square
10 14.0 ± 4.4 15.0 ± 2.6 14.3 ± 6.5 15.3 ± 4.2 16.0 ± 2.6
50 65.7 ± 2.9 65.0 ± 4.0 65.3 ± 3.5 64.7 ± 2.1 56.0 ± 1.7
100 80.3 ± 4.6 82.3 ± 7.4 80.0 ± 3.0 76.3 ± 6.0 58.0 ± 6.6

Toolhang
10 4.3 ± 1.2 0.7 ± 1.2 4.0 ± 2.6 3.0 ± 1.0 0.3 ± 0.6
50 43.3 ± 8.6 41.0 ± 2.6 39.3 ± 4.2 42.7 ± 1.2 26.7 ± 3.2
100 60.0 ± 7.5 54.7 ± 3.5 60.7 ± 3.5 55.7 ± 7.5 45.7 ± 3.8

TABLE VII: Success rates (%) on low-dimensional Robomimic tasks using 10, 50, and 100 demonstrations. We
report the mean ± standard deviation over 100 rollouts for each of 3 random seeds.

number of demonstrations.

Task Setting DiT FDP

Turn Tap
50 demos original 52.0 ± 1.0 38.3 ± 2.1
Zero-shot color 45.3 ± 2.3 32.7 ± 2.3
Zero-shot distractor 50.7 ± 8.1 32.7 ± 10.1

Stack Wine
50 demos original 41.7 ± 4.0 50.0 ± 2.0
Zero-shot color 9.3 ± 3.1 37.3 ± 12.2
Zero-shot distractor 27.3 ± 1.2 44.0 ± 3.5

Sweep to Dustpan
50 demos original 62.0 ± 5.3 77.3 ± 3.1
Zero-shot color 41.3 ± 8.1 78.7 ± 8.1
Zero-shot distractor 62.0 ± 5.3 78.0 ± 9.2

TABLE VIII: Success rates (%) of DiT and FDP for
three RLBench tasks in a 2-camera (front+wrist) setting,
with color changes and distractors. Mean ± std over 50
rollouts (3 seeds).

Research Question 3: How sensitive is the visuomotor
task performance to prioritization of propriocep-
tion?

We provide specifications for the block pick experiment
with different scales of variation in Figure 7.

Fig. 7: Task design for block pick with different scales
of variation (dim in meters).

Fig. 8: Task domains and their variations. In
occlusion, the visual input is blocked using a board;
distractor, flower pots and toys are introduced into
the scene; and in color, the color of the manipulated
object is altered during evaluation.

APPENDIX G
REAL WORLD EXPERIMENTAL DETAILS

The task domains used in our real-world experiments as
shown in Figures 9 and 8 are described below:



Task Setting DP3RGB-DiT DP3-DiT FDP

Turn Tap 50 demos original 56.7 ± 5.7 59.7 ± 4.0 57.3 ± 5.0
zero-shot color 32.0 ± 4.0 62.7 ± 3.1 62.7 ± 4.6

Stack Wine 50 demos original 90.7± 0.6 83.7 ± 1.2 82.7 ± 7.6
zero-shot color 70.7 ± 6.4 82.7 ± 6.1 81.3 ± 4.2

Sweep to Dustpan 50 demos original 84.0 ± 3.5 86.7 ± 3.8 84.7 ± 5.0
zero-shot color 80.0 ± 2.0 89.3 ± 4.6 88.7 ± 1.2

Water Plants 50 demos original 62.7 ± 11.7 60.0 ± 5.3 61.3 ± 3.1
zero-shot color 25.3 ± 6.1 60.0 ± 5.3 64.0 ± 2.0

TABLE IX: Mean success rates (%) and standard deviations over 150 rollouts (3 seeds) for DP3RGB-DiT, DP3-DiT,
and FDP (visual residual over DP3-DiT) across four RLBench tasks under original and zero-shot color settings.

Fig. 9: Tasks considered for the real robot experiments.
In clockwise direction: original task, with distractors,
with camera occlusions, and with color changes.

• Close Drawer: Close the cabinet of an open drawer.
We vary the drawer’s placement angle and position
relative to the robot within a range of 10◦ and 15 cm,
respectively. This is a relatively simple task where the
robot must close the drawer by pushing it with its
end-effector.

• Put Block in Bowl: Pick up a block and place it inside
a nearby bowl. The positions of both the block and the
bowl are varied within a 15 cm range relative to the
robot. This task assesses the policy’s ability to perform
precise pick-and-place actions.

• Pour in Bowl: Pick up a cup and pour its contents
into a nearby bowl. The positions of the cup and the
bowl are varied within a 15 cm range relative to the
robot. This task evaluates the policy’s effectiveness in

operating near joint limits.

• Fold Towel: Fold a kitchen towel placed on a compliant
surface. The towel’s position is varied within a 5 cm
range relative to the robot. This task evaluates the
policy’s capability in deformable object manipulation.

We used ROS1 Noetic for robot software development.
For data collection, we used a 3D Connexion Space-
Mouse Pro to set end-effector velocity targets, which
were executed on the Franka robot using a differential
inverse kinematics controller. Time-synchronized joint
positions and camera images were recorded at 30Hz for
each demonstration and later post-processed by down-
sampling to 10Hz for policy training. During rollout,
we employed a joint position controller to sequentially
execute short-horizon trajectory predictions from the
policy. We allowed a trajectory length of 400 steps for
each task in all our real-world robot experiments. With a
horizon length of 16, this resulted in 25 policy inference
steps per task.

Robot Safety Check. We implemented a safety check
in our robot software to prevent potential damage to
the robot during environment variation experiments. This
was particularly necessary for DP, which often generated
high-jerk joint targets in out-of-distribution scenarios.
For each joint command, we ensured that the target was
within a threshold Euclidean distance from the current
joint state, i.e., ||jtarget − jcurrent|| ≤ 0.1. If this condition
was violated, policy execution was immediately halted
and the rollout was considered a failure.

Policy Robustness. We observe that the FDP policy is
more robust to subtle color changes than to drastic ones.
For example, in the Put Block in Bowl task, training
data was collected using an orange block. In our color
variation evaluations, FDP achieved a higher success rate
with a yellow block compared to a pink block. A similar
trend was observed for DP; however, its success rate
with the pink block was significantly lower than that of
FDP.



We also find that FDP is fairly robust to dynamic obsta-
cles. During our distractor experiments, FDP suc-
cessfully completed the task even when people walked
around the setup, appearing in front of the camera, or
interacted with the workspace during policy execution.
In similar settings, DP exhibited jerky motions leading
to task failures.

Failure Modes for FDP. We observe that the FDP
policy relatively struggles to generalize in tasks with
high motion diversity. For example, in the Put Block
in Bowl task, the policy often fails to grasp the block
when it is positioned near the boundaries of the data
distribution. We also find in the absence of distractors
and occlusions, the DP’s rollout was smoother than
FDP. However, the motion smoothness of FDP remains
consistent across task variations, unlike DP, which often
fails immediately when unseen obstacles or occlusions
are introduced during rollout.

Behavior of FDP is unlike DP, arising from the different
modeling approaches. Since our experiments prioritize
proprioception for visuomotor policies, we see that the
model does not exhibit the "retrying" behavior similar to
diffusion policy, where the DP attempts to recover from
an out of distribution state. This behavior arises from the
domination of the proprioception conditioned base model
over the vision residual model. While we experimentally
evaluate FDP for different classes of tasks, we leave a
deeper understanding of the behavioral differences on
prioritizing different modalities or even joint modalities
like diffusion policies for future work.

APPENDIX H
ABLATIONS

We present several ablations of the baselines and FDP
for Door and Relocate tasks from Adroit and Open
Door task from RLBench. In Table X, we see that
the Base version of DiT does not result in consistent
improvements in performance. Moreover, we observe
that using a learned position embedding results in higher
performance for tasks that require stronger attention to
certain conditional modalities over others, such as for
the task Relocate. DiT results in strong performance
across tasks for the same set of hyperparameters, unlike
Transformer for Diffusion (Cross-attention) [5] which
requires careful tuning [5]. We also train UNet from Chi
et al. [5] with a larger action horizon, as used by Chen
et al. [3], but it did not result in consistent improvements
across tasks.

For FDP ablations on Adroit in Table XI, we observe that
composing the score output as shown in Figure 2 [b] is
not performant. Moreover, we also ablate the design of
the residual model to align more closely with ControlNet

[47]. This model is exactly similar in structure to DP-
DiT. It passes the noisy actions through self-attention and
conditions on the modalities using AdaLn. Finally, we
ablate the choice of the zero-layers and see that a linear
zero-layer outperforms a convolutional one, albeit with a
higher parameter count. We report the linear layer results
for low-dimensional tasks since the parameter count is
still comparable, while we choose the convolutional layer
for visual tasks with multiple cameras as the count bloats
up.

We provide ablations for the Open Door task in Table XI.
First, we ablate the compositional weight of POCO
and observe that higher values perform better in tasks
with limited motion diversity, where a combination of
a weighted base policy πbase and a vision-conditioned
residual πres is used. In our experiments, we use a
fixed weight of 0.1 across all tasks. However, searching
for the optimal compositional weight is cumbersome.
FDP addresses this limitation by learning the residual in
a mathematically grounded manner, avoiding heuristic-
based tuning of pre-trained policy combinations.

We also ablate DP-DiT with varying numbers of camera
views and observe significant variability in performance.
This suggests that, with limited demonstrations, the
model struggles to attend to the right modality. Inter-
estingly, the front camera does not capture the door
knob, yet DP-DiT achieves high performance by learning
spurious correlations with it.

For the Adroit tasks, we find that FDP with a linear zero-
layer achieves the best performance. However, we use a
convolutional layer in all reported experiments due to
its lower parameter count. Lastly, we ablate the training
duration of πbase and find that optimal performance
typically occurs around the minimum value loss (MVL)
checkpoint. Empirically, we observe that tasks with low
motion diversity reach MVL later during training a
proprioception-based πbase. In contrast, visually depen-
dent tasks, such as Relocate in Adroit, overfit early
on proprioception data and reach MVL earlier. Thus,
MVL offers a natural stopping criterion that balances the
influence and controllability of the base policy.



Model Door Relocate
reward > 1 reward > 25 reward > 1 reward > 25

DiT Base (∼130M) 51.3 ± 11.4 21.3 ± 7.6 74.0 ± 6.9 72.0 ± 3.5
DiT Small: fixed pos. embedding 58.3 ± 6.7 34.3 ± 2.5 63.0 ± 4.6 60.0 ± 3.6

DiT Small: learned pos. embedding 62.7 ± 4.7 31.3 ± 0.6 88.7 ± 4.5 85.0 ± 5.2

Model Door Relocate
reward > 1 reward > 25 reward > 1 reward > 25

Cross-attention [5] 53.3 ± 2.1 47.3 ± 2.3 40.0 ± 6.2 36.7 ± 5.7
UNet: obs horizon=4, action horizon=64 35.3 ± 6.8 16.7 ± 4.2 64.7 ± 5.1 59.0 ± 4.4

UNet: obs horizon=2, action horizon=16 67.3 ± 4.7 30.7 ± 0.6 56.0 ± 7.2 52.0 ± 7.0

TABLE X: Performance (mean ± std) on Adroit tasks, reported over 150 rollouts per model (3 seeds). Top: DiT-based
models including a variant with learned embeddings. Bottom: Cross-attention and UNet baselines. Bold indicates
the model selected to present results.

Model Door Relocate
r > 1 r > 25 r > 1 r > 25

FDP: [b] in Figure 2 28.3 ± 3.1 15.3 ± 2.1 1.3 ± 1.2 1.3 ± 1.2
FDP: ControlNet 60.3 ± 6.7 17.7 ± 3.1 43.3 ± 4.0 38.7 ± 4.6
FDP: Conv zero layer (∼33M) 39.7 ± 1.5 16.7 ± 4.6 57.7 ± 1.5 52.0 ± 3.6
FDP: Linear zero layer (∼145M) 74.0 ± 5.2 50.7 ± 2.1 68.7 ± 1.2 65.7 ± 1.2

TABLE XI: Performance (mean ± std) over 150 rollouts for FDP ablations on Adroit tasks- Door and Relocate.
Bold indicates the model chosen to present results in the paper.

Model Mean Std

Transformer variants
DiT: small (∼33M) 24.00 7.21
Cross-attention [5] 3.00 1.00
DiT: base (∼130M) 27.33 5.03

POCO: λ for πbase [42]
λ = 0.5 21.33 7.02
λ = 0.2 11.33 3.06
λ = 0.1 13.0 4.4
λ = 0.01 18.00 5.29

Camera input ablations for DP-DiT
1 camera 42.00 6.00
2 cameras 0.67 1.15
3 cameras 8.67 4.62
5 cameras 24.67 4.16

Model Mean Std

πres ablations (5 cameras)
FDP: [b] in Figure 2 20.67 8.33
FDP: 16 patches 31.33 4.62
FDP: Linear zero layer 45.33 4.16
FDP: Conv, 1 patch 42.00 5.20

πbase training epoch (ep)
100 ep 24.67 6.11
700 ep (MVL) 42.00 5.20
1000 ep 42.00 5.29
1500 ep 40.00 6.00
2000 ep 40.67 3.06

TABLE XII: Ablation results on the Open Door task using 10 demonstrations. Each entry shows the success rate
(mean ± std) over 150 rollouts. Bold values indicate the model chosen to report results in this paper.
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