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Trajectory Understanding

Key Modalities: End effector pose, language

Q: what language instruction best 
describes the robot’s trajectory 
shown in the image?

Q: The robot is tasked to move the 
spoon, which arrow shows the most 
possible direction to move next?

Key Modalities: End effector pose, language

Spatial Relationship Q: The robot is tasked to move the 
tap, which configuration shows the 
goal state that the robot show 
achieve?

A B C

D E

Key Modalities: language, gripper state

Task State - Goal

Key Modalities: language, gripper state

Q: Is the robot grasp Sponge stable?

Task State - Grasp

Key Modalities: 2 views, stereo (depth) img Key Modalities: stereo (depth) images

Scene Understanding

Key Modalities: gripper state, Side+Wrist View

Robot State - Gripper

Key Modalities: 2 Side View, Wrist View

Task State - SuccessQ: In the left image (ext1 camera), a 
red dot is marked. Which point is the 
closest point in the right image (ext2 
camera) corresponding to the same 
3D location?

Multiple View

Q: In the image from ext2, which 
colored point is CLOSEST to the 
camera?

Q: The robot is to turn on the toaster. 
Has the robot successfully completed 
the task?

Left Right

Wrist

Left Right

Left Wrist

Q: Is the robot gripper open?

Approach Stabilize Contact Detach Reset

Fig. 1: Robo2VLM-1 dataset overview. The middle colorbar traces a typical manipulation episode—from pre-grasp through immobilization, contact, detach,
and into post-grasp. Surrounding panels give example questions for each VQA category. Dashed arrows connect every category to the phase(s) in which
its questions are sampled. Icons beneath each panel list the key sensing modalities (RGB, stereo depth, wrist/side cameras, gripper state, end-effector pose,
language instructions) needed to derive ground-truth answers.

Abstract—Vision-Language Models (VLMs) acquire real-world
knowledge and general reasoning ability through Internet-scale
image-text corpora. They can augment robotic systems with
scene understanding and task planning, and assist visuomotor
policies that are trained on robot trajectory data. We explore
the reverse paradigm — using rich, real, multi-modal robot
trajectory data to enhance and evaluate VLMs. In this paper,
we present Robo2VLM, a Visual Question Answering (VQA)
dataset generation framework for VLMs. Given a human tele-
operated robot trajectory, Robo2VLM derives ground-truth from
non-visual and non-descriptive sensory modalities, such as end-
effector pose, gripper aperture, and force sensing. Based on
these modalities, it segments the robot trajectory into a sequence
of manipulation phases. At each phase, Robo2VLM uses scene
and interaction understanding to identify 3D properties of the
robot, task goal, and the target object. The properties are used
to generate representative VQA queries – images with textural
multiple-choice questions – based on spatial, goal-conditioned, and
interaction reasoning question templates. We curate Robo2VLM-1,
a large-scale in-the-wild dataset with 684,710 questions covering

463 distinct scenes and 3,396 robotic manipulation tasks from
176k real robot trajectories. Results suggest that Robo2VLM-1
can benchmark and improve VLM capabilities in spatial and
interaction reasoning.

I . I N T R O D U C T I O N

Emerging Vision-Language Models (VLMs) [1–6] can
perform high-level reasoning and scene interpretation [7, 8].
Recent robotic manipulation systems that integrate VLMs
demonstrate enhanced capabilities in semantic and long horizon
task reasoning [9–11]. Yet, the key challenge persists: the
image-text corpora used for VLM pre-training high-quality
lack fine-grained spatial information, which are prerequisites
for robots to identify long-tail objects, complex scenes, reason
about spatial relationships, and plan physical interactions.

To address this challenge, some research [12–14] relies on
data generation through simulation [15–17]. However, such
data has inherent limitations due to the sim-to-real gap, because
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simulator cannot accurately model visual properties such as
noise, clutter, and lighting variations and physical properties
such as contact dynamics, and interactions. Therefore, strong
performance in simulation often fails to translate reliably to the
physical world. Meanwhile, deriving spatial knowledge from
real-world (“in-the-wild”) data typically requires extensive and
costly human labeling [18, 19]. In contrast, teleoperated robot
trajectories that are used to train visuomotor policies [20],
such as Vision-Language-Action(VLA) [9, 21] or diffusion
policies [22], typically include precise, structured proprio-
ceptive and kinematic information—joint angles, end-effector
poses, gripper states, and force–torque readings—that implicitly
encode 3D spatial information. We hypothesize that visual
and textual data extracted from robot trajectories can improve
VLM’s spatial reasoning capabilities.

We present Robo2VLM, a multiple-choice Visual Question
Answering (VQA) dataset generation framework for VLMs
from real-world robot data. Given a human-teleoperated robot
trajectory, Robo2VLM segments the trajectory into distinct
manipulation phases, selects representative frames from each
phase, and generates questions whose answers are supported
by synchronized proprioceptive and kinematic ground truth.
We apply Robo2VLM to 176k diverse, real-world trajectories
from the Open X-Embodiment (OXE) dataset [23], producing
over 3 million VQA samples. Inspired by data optimization
paradigms such as domain reweighting in natural language
processing [24] and robot policy learning [25], we curate
Robo2VLM-1, a large-scale, in-the-wild VQA dataset with
684,710 questions covering 463 distinct scenes, 3,396 robotic
manipulation tasks, and 149 manipulation skills.

We evaluate 14 model configurations with state-of-the-art
open source models (LLaVA, Llama and Qwen) and with
different parameter sizes and prompting techniques. The results
indicate that some VLMs can achieve near human performance
in questions related to object reachability and interaction
understanding. Evaluation also suggests a significant gap
to human performance, especially in complex reasoning of
fine-grained spatial relationship and interactions. Finetuning
LLaVA [3] with Robo2VLM-1 improves most of the spatial
and interaction capabilities with increasing training dataset size,
with a maximum 50% accuracy gain in state reasoning and
task understanding.

This paper makes the following contributions: (1)
Robo2VLM, a VQA data generation framework from real
robot trajectories. (2) Robo2VLM-1, an open VQA dataset
with 684,710 questions covering diverse and realistic evaluation
scenarios for manipulation. (3) Extensive evaluation data on
state-of-the-art and fine-tuned VLMs.

I I . R E L AT E D W O R K

Large-Scale Robotics Datasets: Recent large-scale robotics
datasets, such as Open-X-Embodiment [23] and DROID [26],
provide extensive teleoperated demonstrations of complex
manipulation skills. These datasets are foundational for training
modern generalist robot policies—including Octo [21], RT-
1 [27], RT-2 [28], OpenVLA [9], Gemini Robotics [10],

π0 [29], and Hi Robot [11]—enabling them to learn diverse
skills and understand nuanced physical interactions from broad
data. Crucially for grounding VLMs, robotics datasets from
Open-X-Embodiment contains rich sensory-modal including
RGB video, proprioceptive [27, 30–43], depth data [27, 30–32,
34], and force-torque [36, 38–40], that reflect the dynamics
of interaction. These information presents an opportunity to
bridge robotics data with VLMs.
VQA Benchmarks for Robotics and Embodied AI: VQA
offers a powerful paradigm for evaluating the visual reasoning
capabilities of VLMs [44–46]. Recently, VQA benchmarks
have been developed for robotic tasks such as visual navi-
gation in long-horizon planning [47, 48]. Simulation-based
approaches [12–14] (often utilizing environments like [15–17])
generate large-scale VQA dataset, but face the persistent sim-
to-real domain gap, where the result may not hold in reality
due to factors like noise, clutter, and lighting variations. Real-
world data benchmark, such as RoboVQA [18] (human-verified
Q/A), improve generalization to real world setting but often
involve significant manual annotation effort. These methods
typically do not fully automate VQA generation by exploiting
the rich spectrum of non-visual modalities (e.g., force, torque,
proprioception), limiting their ability to support questions
grounded in concepts such as grasp stability or multi-view
spatial alignment. In contrast, Robo2VLM reduces the need
for manual annotation and enables interaction and physical
properties reasoning that are underexplored in previous VQA
benchmarks, such as gripper states, grasping stability, task goal,
and spatial information focus on the robot and target objects.

I I I . R O B O 2 V L M

Robo2VLM generates five-way multiple-choice question
answering (MCQ) from real robot teleoperated trajectories.
Robo2VLM offers the following key features: (1) High-quality
and representative keyframe selection from long-horizon, in-
the-wild, multi-modal robot trajectories, ensuring semantic
diversity and relevance; (2) Manipulation-centric question gen-
eration encompassing spatial, goal-conditioned, and interaction
reasoning, each aligned with specific manipulation phases and
grounded in corresponding sensor modalities.

We begin by defining a robot trajectory as a time-
synchronized sequence of data frames from multiple sensor
modalities including exteroceptive and proprioceptive [49]. Let
T denote the length of a trajectory, and let t ∈ {1, 2, . . . , T}
index the discrete time steps.

Definition 1. (Robot Observation Data Frame) At each time
step t, the robot data frame is represented as a tuple:

Dt =
(
IRGB
t , IStereo

t ,pEE
t , sGripper

t , ft

)
where IRGB

t = {IRGB
t ∈ RH×W×3} is a set of multi-view RGB

images captured from monocular cameras, IStereo
t = {IStereo

t ∈
R2×H×W×3} denotes a set of multi-view stereo image pair
(left and right) if available, pEE

t ∈ SE(3) is the 6-DoF end-
effector pose and sGripper

t ∈ R denotes the scalar gripper state



such as gripper aperture, ft ∈ R6 is the force-torque vector
from the end-effector sensor.

The camera images are referred as exteroceptive sensing and
the end-effector-related states belong to proprioceptive sensing.

Definition 2. (Robot Trajectory) A trajectory T is defined as
the temporally ordered sequence of observations D1:T with a
trajectory task language description l:

T = {D1:T , l}

Given a robot trajectory, Robo2VLM begin with scene-
interaction understanding, applying semantic segmentation
and manipulation phase classification to identify key segments
(e.g., pre-grasp/approaching, contact, grasp, release). From
these, we extract keyframes based on phase transitions, scene
coverage, and visibility of objects or the robot across multiple
camera views. We use manipulation domain knowledge to
design question prototype to target core manipulation skills
such as spatial relationship, goal conditions, and interaction
understanding. Robo2VLM instantiates these prototypes on
selected keyframes and transforms them into natural language
multiple-choice questions via a visual-language grounding
module that performs question conversion and spatial query
projection.

A. Scene-Interaction Understanding

a) Embodied Scene Understanding: Given a task descrip-
tion in nature language and all images from different camera
views, we first parse the language instruction using an off-the-
shelf LLM such as Qwen 2.5 [2] to obtain {target object},
scene, task, and skill description. For the spatial understanding
in manipulation, we need to know the relative direction and
displacement between target object and gripper. From the
proprioceptive data, we obtain the target object interaction
point ground-truth from the robot trajectory data frames.

b) Manipulation Phase Segmentation: To segment robotic
manipulation trajectories into semantically meaningful phases,
we define a temporal phase classification function based on
the sequence of end-effector poses, gripper aperture signals,
and force-torque measurements: pEE

1:T , s
Gripper
1:T , f1:T . To align

different types of gripper aperture, sGripper
t is normalized to

[0, 1], where 0 indicates fully open and 1 indicates fully
closed. Let st ∈ [0, 1] denote the normalized aperture at time
t, and ∆st = st − st−1 its temporal derivative. ∆st ≈ 0
denotes a small change within a tolerance margin ϵ, typically
set to filter out noise. Let ∥ft∥ be the force magnitude (if
available). We introduce three threshold parameters: τg (grasp
threshold), τc (closure threshold), and τf (force threshold for
contact detection). Manipulation processes can be represented
as a sequence of discrete phases, including approaching,
stabilizing, contacting, releasing, and resetting or transition-
ing to subsequent actions. We denote the phase varible as
Φ = {Φapp,Φstab,Φcont,Φrel,Φreset,Φtrans}. Each timestep t is
assigned a label ϕt ∈ Φ according to the following temporal

logic rules:

ϕt =



Φapp if st < τg ∧∆st < −ϵ

Φstab if ϕt−1 = Φapp ∧ st < τg ∧ |∆st| ≤ ϵ

Φcont if ϕt−1 = Φstab ∧ st ≥ τc ∧ |∆st| ≤ ϵ

Φrel if ϕt−1 = Φcont ∧ st ≥ τc ∧∆st > ϵ

Φreset if ϕt−1 = Φrel ∧ st < τg ∧∆st > ϵ

Φtrans otherwise

The inclusion of force magnitude ensures that passive closure
without external contact is not misclassified as active interaction.
This multimodal phase labeling strategy captures both kinematic
intent and physical contact, enabling robust segmentation of
diverse manipulation behaviors.

To enforce a temporally coherent yet flexible phase progres-
sion, we define a partial order over the manipulation phases:

Φapp ≺ Φstab ≺ Φcont ≺ Φrel ≺ Φreset → Φapp

This structure enforces unidirectional transitions along the
phase chain, while allowing both phase skipping (e.g., directly
from Φapp to Φcont) and looping from the terminal phase Φreset
back to the initial phase Φapp, which is common in sequential
manipulation routines. At each time step t, the phase label must
satisfy ϕt ⪰ ϕt−1, or ϕt = Φapp if ϕt−1 = Φreset, ensuring
temporal monotonicity or task repetition without reversal.
The auxiliary state Φtrans is used for ambiguous, missing,
or conflicting observations where no confident assignment is
possible. This symbolic, temporally-constrained model supports
robust segmentation of complex manipulation behaviors under
noisy or partially missing sensory input.

B. Visual Question Prototype

We design a set of visual question prototypes, each of which
aligns with specific manipulation task completion required
robot capabilities and anchors to distinct manipulation phases
as illustrated in Table I. These prototypes are organized into
three reasoning categories.

Spatial Reasoning focuses on the robot’s understanding
of object geometry, reachability, and spatial layout across
viewpoints. Questions such as “Is the object reachable?” or
“What’s the relative direction between the gripper and the
object?” are grounded in the early approach and stabilize
stages. These rely on RGB, depth, stereo, and 3D gripper pose
data, which together enable accurate localization and spatial
inference across frames or views.

Goal-conditioned Reasoning probes the agent’s high-level
understanding of tasks, including goal inference, future action
prediction, and overall task success. Questions such as “Is the
task failed?”, “What will the robot do next?”, and “What is
the robot’s current action phase?” span multiple manipulation
phases from approach through reset . These require
temporal context, pose estimation, and sometimes motion
history, leveraging the multi-step evolution of the scene.

Interaction Reasoning focuses on physical interaction
dynamics, such as grasp stability or the robot’s current actuator
state. These occur during stabilize , contact , and release



TABLE I: Categorization of visual reasoning questions for robotic manipulation, with manipulation phase (color-coded) and data modality context. Approach,
Stabilize, Contact, Release, Rest.

Capabilities Question Prototype Manip. Phase Sensor Modality

Spatial Reasoning

Object State Is the {target object} reachable by the robot? IRGB
t , Dt

Spatial Relationship What’s the relative direction in 3-D between end effector and
{target object}?

IRGB
t , pEE

t

Scene Understanding Which point is closer to the camera viewing the scene? IRGB
t , IStereo

t

Multiple View Which point in the right-side image corresponds to the point
in the left-side image?

IStereo
t

Goal-conditioned Reasoning

Task State-success Has the robot successfully completed the task? IRGB
t

Task State-Goal What is the goal configuration for {interaction}? IRGB
t , pEE

t

Action Understanding The robot is {interaction}. What is the robot’s current
action phase?

IRGB
t , T1:t

Interaction Phase What will the robot do next? IRGB
t , ṗEE

t

Trajectory Understanding What task does this trajectory likely accomplish? IRGB
t , pEE

t

Interaction Reasoning

Task State-grasp Is this a stable grasp? IRGB
t , ft

Robot State Is the robot gripper currently open? IRGB
t , sGripper

t

phases, and depend on RGB, tactile, or gripper aperture signals.
For instance, the question “Is this a stable grasp?” may depend
on contact force readings or inferred object displacement.

The ground truth of the questions are grounded by multiple
sensor modality observations. We design the incorrect answers
as part of the visual question prototypes. For example, in
the scene understanding, we require the sampled points to be
significantly different in depth from other points and from
the depth sensor to account for sensor inaccuracy. In action
understanding, the correct action arrow differs significantly
from the distractor arrows by having a large angular separation
in the projected 2D image. To detect guessing by hallucination,
we randomly replace some correct answers with ”None of
Above” option.

C. Keyframe Selection

Given that raw robotic trajectories often contain hundreds
of frames sampled at high frequency, using all frames is
computationally expensive and can introduce redundancy due
to minimal temporal variation. Moreover, many intermedi-
ate frames are visually or semantically uninformative for
downstream reasoning tasks. To address this, we select a
compact set of keyframes that retain essential semantic and
visual cues while reducing redundancy and data volume. These
keyframes are extracted from the multi-modal robot trajectory
T = {Ot}Tt=1 based on manipulation phase transition, scene
coverage diversity and context visibility.

I V. R O B O 2 V L M - 1 D ATA S E T

Open X-Embodiment and its datasets Open X-
Embodiment [23] is major collaborative research initiative
that aggregates robotic demonstration data collected from 22
different robot embodiments across 35 research labs worldwide,
encompassing over 1 million trajectories covering more than
500 skills. Applying domain reweighting [24], we select a
subset focusing on manipulation with real robot embodiments.
In total, we use 13 datasets [28, 30–43] with a total of 176,139

TABLE II: Trajectories and sensing modalities across datasets with a
total of 176k trajectories. # Traj: number of trajectories; Prop: joint-state
proprioception; Dpth: depth images; GripAp: gripper-aperture signal; # VQA:
number of questions. ✓ denotes modality is available, ✗ denotes absent.

Dataset # Traj Prop Dpth GripAp # VQA

DROID [30] 92k ✓ ✓ ✓ 299k
Fractal [27] 73k ✓ ✗ ✓ 267k
Kuka MM [33] 3k ✓ ✓ ✓ 25k
Autolab [34] 896 ✓ ✓ ✓ 22k
Sirius [35] 600 ✓ ✗ ✓ 21k
MVP [36] 480 ✓ ✗ ✓ 8k
VINN [37] 435 ✗ ✗ ✗ 34
Fanuc [38] 415 ✓ ✗ ✓ 11k
TableTop [40] 110 ✓ ✗ ✓ 5k
VIOLA [41] 135 ✓ ✗ ✓ 8k
BUDS [42] 50 ✓ ✗ ✓ 6k
ROT [43] 14 ✓ ✗ ✓ 245

trajectories. While most modalities are included in Open X-
Embodiments release, we manually include modalities intro-
duced by the original paper. For example, DROID dataset [30]
includes camera calibration information and stereo depth. The
detailed modality inclusion can be found in Table. II.

Robo2VLM for Open X-Embodiment We use Robo2VLM
to process each robot trajectory from the Open X-Embodiment
dataset by selecting and interpreting the scenes. The entire
process takes 2935.7 GPU hours on Nvidia A100 GPUs. For
each selected keyframe, Robo2VLM instantiates questions from
embodied question templates resulting in the generation of a
pool of over 3 million VQA items.

a) Robo2VLM-1 Curation: Inspired by data optimization
paradigms such as domain reweighting in natural language
processing [24] and robot policy learning [25], our curation
process aims to balance the distribution of questions across
diverse scene and task types. It selects a representative and high-
quality subset of questions that effectively balances diversity



across scenes, tasks, skills, and reasoning types, while ensuring
clarity and unambiguous ground truth. In total, Robo2VLM-1
contains 684,710 questions, spanning 463 distinct real-world
scenes, 3,396 unique robotic manipulation tasks, and 149
different manipulation skills.

V. E X P E R I M E N T

In this section, we sample 60k VQA from Robo2VLM-1 with
a 50k training set (Robo2VLM-1-Train) and a 10k testing set
(Robo2VLM-1-Test). We mainly study two research questions:
(1) How does Robo2VLM-1-Train dataset improve the spatial
and interaction reasoning capabilities of VLMs? and (2) How
effectively does Robo2VLM-1-Test evaluate VLMs in these
reasoning tasks?

Evaluation Setup We benchmark state-of-the-art open-
source models in different configurations, including LLaVA,
Llama 3.2 Vision, and Qwen2-VL/Qwen2.5-VL. Each model
is evaluated under both zero-shot and Chain-of-Thought (CoT)
prompting settings. For CoT, we follow the prompting strategy
from [10] by appending the following instruction to the end
of each question: “Reason step by step about the answer, and
show your work, for each step. Only after that, proceed to the
final answer.” We run a simultaneous Llama-3.2-3B-Instruct
to extract model outputs for final letter answer. We focus fine-
tuning on language layers (both attention and MLP modules)
while keeping vision layers frozen. For each configuration, we
use random 2000 questions from the testing set. For consistency,
all models are evaluated with a temperature of 0.7, a maximum
completion token length of 4096, and overall context length of
10240. All models use their vision or vision instruct version
with float16 quantization. All models are evaluated with 8
Nvidia A100 GPUs with 80GB memory. We use LoRA to
fine-tune LLaVA 1.6 with rank 128 and alpha 256.

A. Benchmark with Robo2VLM-1

Table III presents a detailed comparison of vision–language
foundation models on the Robo2VLM-1 benchmark, evaluated
under both zero-shot and Chain-of-Thought (CoT) prompting
conditions. The results reveal nuanced interactions across model
architecture, scale, and reasoning strategy.

Cross-Model Performance: Evaluation data on Robo2VLM-
1-test suggests that Qwen models has higher overall accuracy
compared to other VLMs of the same configuration, which
align with the observation from other VQA benchmarks such
as [50, 51]. Qwen 2.5 VL-72B achieves the highest zero-shot
accuracy at 37.76%, while Qwen 2.5 VL-32B achieves 41.30%
overall accuracy in the CoT setting. Qwen models particularly
excel in object-centric categories such as Object State, where
Qwen 2.5 VL-72B reaches 85.00% (zero-shot) and 92.37%
(CoT), and Interaction Phase (IP) (71.09% zero-shot, 74.09%
CoT for 72B).

Impact of Model Scale. Zero-shot accuracy generally
improves with model size — rising from 30.63% (Qwen 7B)
to 37.76% (Qwen 72B). However, this trend does not hold
in the CoT setting, where the 32B model surpasses the 72B
model (41.30% vs. 39.52%). The observation aligns the official

technical report of Qwen2.5[2] that the mathematical and
problem-solving capabilities of Qwen2.5-VL-32B are further
enhanced through reinforcement learning. LLaMA models
display a different trend — while the 11B model outperforms
the 90B version in zero-shot setting, the larger model benefits
more under CoT prompting, suggesting that scaling may unlock
latent capabilities only when paired with explicit reasoning
support.

Effectiveness of CoT Prompting: CoT prompting generally
enhances performance for both Qwen and LLaMA models. For
example, Qwen 2.5 VL-7B improves from 30.63% to 34.82%,
and LLaMA 3.2-90B increases from 28.60% to 30.45%. The
most substantial gains are observed in Qwen 2.5 VL-32B,
which improves from 37.68% to 41.30%. Results suggest that
CoT benefits Task State–Success(from 55.08% to 60.43%),
and Interaction Phase (from 63.80% to 71.35%). However, in
the Spatial Relationship category, for example, Qwen 32B’s
accuracy drops from 21.85% to 18.82%, indicating that verbose
reasoning chains may introduce noise in tasks requiring precise
spatial localization.

B. Finetuning with Robo2VLM-1

We perform model finetuning experiment using Robo2VLM-
1-train and evaluate on Robo2VLM-1-test. We increase the
training data samples from 10k to 50k in finetuning. As
depicted in Figure 2, increasing the fine-tuning data generally
leads to notable performance enhancements across most VQA
categories. Significant gains are observed in ‘Object State’
understanding, where accuracy improved from 29.34% to
80.24%. “Task State-success” also sees a substantial rise
from 47.65% to 68.03%. Other categories demonstrating clear
positive trends with more data. However, in some categories
such as Spatial Relationship and Task State–Goal, fine-tuning
with limited data (e.g., 10k) underperforms the no-finetuning
baseline. This may be because the model has not yet seen
enough task-specific examples to begin generalizing, or because
the question formats in Robo2VLM-1 differ from those
seen during pretraining, requiring adaptation time. In some
categories, finetuning with Robo2VLM-1 does not improve
the performance due to the reasoning capability limitation of
the base model. This is also reflected in the fact that LLaVA
shows performance degradation in CoT prompting in Table
III. The “interaction phase” question requires the model to
predict the next frame, demanding complex reasoning and
making it a particularly challenging problem. This suggests
that for complex tasks, the base model language performance
is important for further improvement with Robo2VLM-1.

C. Comparison with Human Performance

We conducted a human evaluation covering all 11 categories
defined in Table III. For each category, a human evaluator
was asked to randomly answer questions from Robo2VLM-
1-test. We use the average success rate as a reference for
comparison with three models—LLaVA 1.6-7B, LLaVA 1.6-
7B-Finetuned, and Qwen 2.5 VL-32B—CoT on the same set
of categories as shown in Figure 3. Qwen 2.5 VL-32B—CoT



TABLE III: Performance Comparison of Multimodal Foundation Models on OpenX-VQA Benchmark Categories (%). Upper part: zero-shot. Lower part: with
CoT prompting.

Spatial Reasoning Goal Reasoning Interaction Reasoning

Model Overall RS OS SR SU MV TS-G TS-S TS-GL AU IP TU
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Zero-Shot
LLaVA 1.5-7B 21.58 35.32 23.87 16.08 17.78 17.50 31.82 23.79 19.03 20.30 21.74 22.37

LLaVA 1.6 Mistral-7B 24.09 30.31 35.13 19.42 20.24 19.29 34.20 30.77 19.52 18.67 20.70 22.83

LLaVA 1.6-34B 24.94 26.66 29.75 21.47 23.18 17.86 29.19 29.40 17.90 19.49 36.98 30.59

Llama 3.2-90B 28.60 31.94 55.87 18.51 26.61 16.43 28.23 35.27 8.06 18.13 51.56 49.77

Qwen 2.5 VL-7B 30.63 41.68 55.63 21.55 24.38 17.32 33.01 42.57 7.82 25.71 46.61 39.73

Qwen 2.5 VL-32B 37.68 49.39 71.37 21.85 28.53 17.50 34.21 55.08 12.90 30.45 63.80 49.32

Qwen 2.5 VL-72B 37.76 38.84 85.00 22.31 28.23 15.71 28.47 51.89 10.08 33.96 71.09 54.79

CoT Reasoning
LLaVA 1.5-7B 21.61 28.28 21.00 17.37 20.90 18.93 25.36 24.19 21.53 21.24 20.31 20.09

LLaVA 1.6 Mistral-7B 24.05 27.60 38.87 17.15 20.18 22.32 25.84 28.03 18.47 18.40 30.60 29.68

LLaVA 1.6-34B 23.49 20.43 31.00 21.24 22.88 20.36 18.18 26.14 16.77 21.79 35.16 26.94

Llama 3.2-90B 30.45 32.34 79.87 13.35 26.37 18.57 29.90 29.14 14.27 19.76 59.24 44.75

Qwen 2.5 VL-7B 34.82 38.02 90.00 21.78 23.30 16.79 36.84 46.48 18.39 28.15 42.71 36.99

Qwen 2.5 VL-32B 41.30 48.85 90.50 18.82 29.19 19.82 35.17 60.43 18.71 32.21 71.35 49.32
Qwen 2.5 VL-72B 39.52 44.79 92.37 18.36 29.73 13.39 29.19 55.28 13.15 36.13 74.09 46.12

Category Abbreviations: Spatial Reasoning: RS: Robot State, OS: Object State, SR: Spatial Relationship, SU: Scene Understanding, MV: Multiple View. Goal Reasoning: TS-G:
Task State-grasp, TS-S: Task State-success, TS-GL: Task State-goal. Interaction Reasoning: AU: Action Understanding, IP: Interaction Phase, TU: Trajectory Understanding.
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Fig. 2: Fine-tuning LLaVA 1.6 with increasing training data of Robo2VLM-1 from 10k to 50k VQA items. Accuracy improvements almost all categories
compared to no fine-tuning.
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Fig. 3: Comparison of human performance to different multimodal foundation
models.

achieves near human accuracy, with 90.5% in Object State
compared to 96.7% for humans, and 71.35% in Interaction
Phase versus the human score of 80.0%. In more complex
spatial reasoning tasks such as Spatial Relationship, where
human achieves 60.0% accuracy, the best model (LLaVa 1.6-
7B, finetuned) reaches only 19.42%. This may suggest that
even if observing from multiple views, a monocular image
may lack the full depth information needed to accurately
determine the spatial relationship. Furthermore, finetuning
enhances model performance. LLaVA 1.6-7B finetuned on the
Robo2VLM-1 training dataset shows consistent improvements
across multiple categories, particularly in Task State, Object
State, and Trajectory Understanding, compared to its non-
finetuned LLaVA 1.6-7B. These findings demonstrate the
potential Robo2VLM-1 in studying and narrowing the gap
between model and human performance in spatial and task
reasoning.
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