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Fig. 1: We present SteerVLA, a framework for training steerable driving VLAs using hindsight label refinement and a flexible

hierarchical architecture. We demonstrate that our policy can foll
user instructions.

Abstract—For autonomous vehicles to be truly useful, they must
move beyond fixed rules to understand nuanced human intent
and adapt to diverse scenarios. We introduce a hierarchical vision-
language-action (VLA) framework for promptable autonomous
driving. Our framework combines a high-level planner that
reasons over high-level specifications of desired behaviors — “I’'m
late for work, get me there as fast as possible” — to generate
intermediate language commands with a low-level policy that
grounds these intermediate commands into trajectory-level actions.
To generate diverse paired language data from driving datasets
without structured language labels, we propose a label refinement
pipeline that makes use of off-the-shelf VLMs applied to hindsight
data to generate a “preference function” aligning high-level user
specifications with their corresponding intermediate- and low-
level commands. We evaluate our framework against both real
and simulated driving datasets, using the Berkeley DeepDrive
dataset and the CARLA simulator, respectively, and find that it
provides a highly steerable driving policy that is responsive to
user prompts without compromising driving performance.

I. INTRODUCTION

Autonomous driving has seen great progress in recent years,
with the advent of end-to-end learned behaviors enabling
increasingly flexible behaviors [11, [19]. However, current
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ow language instructions and reason over visual references and

driving models aim to achieve a single “nominal” behavior,
offering limited support for user customization and lacking
the ability to be steered by the user via nuanced language
instructions.

In the real world, different users have different preferences
for how a car should act in a given scenario. For example,
passengers who are running late for a flight might want their
car to act very differently from a passenger who is carrying a
full cup of hot coffee. We propose that driving policies should
be able to reason over both visual information and freeform
user-specified instructions to produce steerable behaviors, just
like their human counterparts. This allows a model to follow
user preferences (e.g., “drive cautiously, I'm carrying a cup of
hot coffee”) as well as specific commands (e.g., “cut in behind
the black truck to take this exit”). Traditional self-driving
models rely on rule-based reasoning, with language following
restricted to a limited set of high-level routing commands (e.g.,
“turn left”), which makes following instructions that require
implicit reasoning difficult.

On the other hand, learning-based methods that lever-
age vision-language models (VLMs) [9] or fine-tune vision-
language-action models (VLAs) [3, [11]] endow the model with
semantic reasoning but have largely focused on interpreting or
narrating the behavior of a vehicle rather than improving their



instruction-following capabilities. In this work, we present a
hierarchical vision-language-action framework for instruction-
following and user-aligned autonomous driving. Our key insight
is that a hierarchical architecture enables the decoupling
of reasoning and acting into two policies. We preserve the
VLM’s strong semantic priors in the high-level planner, which
interfaces with the low-level policy through meta-actions such
as “turn left cautiously”. The low-level policy then grounds
these meta-actions into continuous control trajectories.

Applying this framework to off-the-shelf driving datasets,
we build SteerVLA, a user-steerable hierarchical VLA for
autonomous vehicles. We adapt existing datasets focused
on the interpretability of driving behaviors, using hindsight
information to train a highly steerable low-level policy. A
powerful off-the-shelf VLM serves as our high-level planner.

We evaluate our framework using offline metrics on real-
world driving datasets, including open-loop evaluations of
the full pipeline. Our experiments assess both the driving
performance and instruction-following ability of the model
across a range of instructions and scenarios. We compare our
low-level policy’s performance to a state-of-the-art baseline and
demonstrate clear improvements in both control quality and
language-following accuracy. Extensive qualitative examples
illustrate the steerability of our approach.

II. RELATED WORK

Vision-Language-Action models. Inspired by the success
of pretrained vision-language models (VLMs), several works
have introduced vision-language-action (VLA) models [4],
which typically consist of a VLM backbone fine-tuned to
produce robot actions, rather than language, conditioned on
visual inputs and language instructions [[15]. These models
benefit from excellent cross-modal grounding between language
and vision, enabling the transfer of internet-scale semantic
knowledge from the pretraining data. Recent works have also
sought to imbue VLAs with reasoning capabilities [28] to
improve generalization and compositional task-following, and
have introduced hierarchical structure to improve long-horizon
behavior [2, [12].

End-to-end policies for autonomous driving. Recent work
has explored a range of approaches for integrating multimodal
foundation models into autonomous driving [8} [10} 25]. Some
efforts leverage pretrained VLMs to provide driving systems
with broad world knowledge and reasoning capabilities [20]],
while others have sought to develop VLA policies for driving
by fine-tuning VLMs with an action head [11, 29]]. These
works typically focus on the low-level act of driving a car,
with the “language” component of the VLA used mostly as
an auxiliary learning signal or for very structured instructions
(at the level of our meta-actions). In contrast to these works,
we aim to develop a driving policy that is highly steerable in
response to open-ended user instructions—despite the lack of
a pre-existing dataset with these types of labels.

Steerable VLA policies. One major promise of VLA policies
is that their VLM backbones implicitly have strong language-
following priors—in other words, they should be highly
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Fig. 3: Architecture of the driving policy. We use a flexible
hierarchical architecture, which takes in an instruction, routing
information, and the current observation of the vehicle and
produces the future trajectory of the vehicle.

amenable to steering with open-ended language instructions.
Prior work [21] has shown that it is possible to fine-tune a
VLA policy with steerable instructions, given sufficient data.

However, despite encouraging progress, existing practical
VLA policies in open-world settings like driving often suffer
from limited language steering. Works studying this effect
have found that training on actions can degrade the internet-
scale knowledge acquired during pretraining. In other words,
the sudden shift from typical VLM pretraining tasks to a
robot action generation task during fine-tuning can harm
the network’s general semantic knowledge and language-
understanding capabilities [6]]. We build upon prior work that
utilizes a hierarchical framework [[13| [16] to mitigate this shift
by training a high-level policy on tasks that resemble the
original pretraining distribution, and a low-level policy that
interfaces with the high-level policy through an intermediate
representation. In this work, we use a VLM as the high-level
policy and fine-tune a VLA, with structured “meta-actions”
forming an intermediate bridge between the two components.

III. METHOD

To achieve steerable driving policies, we require diverse,
language-labeled data that allow us to train policies capable
of flexibly understanding and producing actions in line with
user-specified instructions. Additionally, we require a policy
architecture conducive to learning how to follow complex
language prompts that demand strong reasoning abilities. To
this end, we describe the two key components of our method:
1) a flexible hierarchical VLA policy architecture with meta-
actions as an intermediate representation, and 2) VLM-guided
hindsight labeling of driving data.

A. Hierarchical VLA Architecture

The first hurdle to following complex language prompts
is being able to understand complex language in the context
of visual observations. Therefore, we use a hierarchical VLA
policy architecture, where the low-level policy is fine-tuned
from a powerful VLM pre-trained on internet-scale data,



offering strong semantic priors for vision and language, and the
high-level policy is a powerful off-the-shelf VLM. By using
a hierarchical structure, the high-level policy is tasked with
focusing on the reasoning component of the task. The low-
level policy is trained to produce control commands (speed
and course deltas) conditioned on the meta-actions, allowing
it to focus more on grounding and acting. An overview of the
architecture is provided in [Fig. 3]

High-level planner. The high-level policy, or “planner,” is
tasked with interpreting a complex instruction and reasoning
about which meta-action should be taken at the current time
step to follow it. We instantiate the high-level planner as a
powerful VLM [22]], leveraging its strong semantic priors to
generate a suitable meta-action that captures both the global
and local nuances of the instruction. We structure the query to
the VLM as a visual question-answering problem by providing
the current observation and speed, and prompting the model to
produce an appropriate meta-action based on a few in-context
examples.

Low-level VLA policy. Once a meta-action has been
generated, the steerable low-level policy predicts actions that
align with the desired behavior. To this end, we train a meta-
action-conditioned VLA policy on the BDD-X dataset [14]
(see for details on generating meta-action labels)
using PaliGemma [1]] as the backbone for the VLA. We
follow the recipe from [15]], using special tokens to represent
discretized actions one dimension at a time. Unlike OpenVLA,
we also predict an open-loop action chunk [3. [7] which
enables smooth temporally-correlated actions and decreases
compute requirements. The policy takes as input the current
front camera image observation of the vehicle and the current
speed. The output is a chunk of 6 timesteps each including
delta speed and course (steering angle) over the next three
seconds at a frequency of 2 Hz, normalized based on the
dataset statistics [3, 24].

B. Generating Diverse Synthetic Labels for Driving Data.

While driving datasets with language labels exist, they often
consist of short-horizon trajectory descriptions with limited
detail and do not capture higher-level driver intentions—such
as those in the BDD-X dataset [14]]. However, to enable
fine-grained language following, we require detailed meta-
action labels. To address this, we perform a VLM refinement
step to determine the “style” and “motion extent” of the
driving behavior for each trajectory chunk. We leverage future
trajectory speed and course information through the benefit
of hindsight, using information that is unavailable to the final
policy at inference time, but accessible during annotation.
For example, we transform the original label “the car rolls
through the stop sign” into the more fine-grained “the car rolls
through the stop sign with a slight right turn, accelerating
gradually, driving normally.” As a result, we obtain a dataset
of (meta-action, action chunk, observations) tuples that can
be used to fine-tune our low-level VLA policy. For detailed
prompts provided to the VLM and example refinements, see

Append A

IV. EXPERIMENTS

Our experiments answer the following questions:

o How accurately does SteerVLA predict driving trajectories
given free-form language instructions?

« How well can it follow diverse language instructions via
meta-actions?

o Does our automatic meta-action annotation provide effec-
tive supervision?

« How effectively does the high-level planner generate meta-
action plans?

A. Experimental Setup

Data. We train the VLA policy on the BDD-X training split
[14], which provides high-level natural language descriptions
of driver behavior. We filter out sequences with corrupted or
missing GPS data, resulting in approximately 16,000 training
frames and 2,000 test frames. We evaluate the models on the
test set, which contains unseen language instructions and novel
driving scenes. To improve language-conditioned learning, we
refine BDD-X descriptions using GPT-4o [17]; these refined
descriptions serve as language instructions for the VLA policy.

Evaluation protocols. To assess trajectory prediction ac-
curacy, we report Average Displacement Error (ADE) and
Final Displacement Error (FDE) at 1s, 2s, and 3s prediction
horizons [18]], along with Root Mean Square Error (RMSE) for
future speed and course angle. To evaluate instruction-following
capability, we conduct a blind manual evaluation over 20
rollouts per model. Human annotators determine whether each
predicted trajectory aligns with the given language instruction,
without knowledge of which model generated it. To assess the
high-level planner, we compare predicted meta-actions against
ground-truth annotations using standard language generation
metrics: BERTScore, BLEU, and ROUGE-L. We also evaluate
the full pipeline, where the high-level planner generates meta-
action plans that serve as language instructions for the VLA
policy.

Generating user-specified instruction labels. While some
datasets include labels at the level of meta-actions, we are
unaware of any that provide labels at the user-specified instruc-
tion level. However, such labels are essential for evaluating
the full instruction-following pipeline, in which a high-level
planner generates language commands that the low-level policy
must execute. To generate these labels, we once again leverage
hindsight labeling of trajectories. As shown in we
provide a summarized description of the vehicle’s behavior
in natural language, derived from the refined BDD-X labels
described in We then query Gemini 2.0 Flash to
predict a high-level command or routing instruction from a fixed
set (e.g., turn right, turn left, move forward, stop/slow down)
[26], akin to the guidance provided by an in-car navigation
system, along with a persona capturing the driver’s likely
motivation or situational context. This process yields a dataset
containing trajectories labeled with both short-horizon meta-
actions and longer-horizon, user-oriented instructions. The

prompting details are provided in



(a) Original: “The car makes a smooth (b) Original: “The car accelerates steadily
left turn, decelerating then accelerating, while making a smooth, wide right turn,
with normal driving style”” New: “The reflecting a normal driving style.”, New:
car makes a smooth right turn, decelerat- “The car decelerates steadily while making
ing then accelerating, with normal driving a smooth, wide right turn, reflecting a
normal driving style.”

style.”

(c) Original: “The car accelerates slowly
and steadily forward, maintaining a straight
course, driving normally.”, New: “The car
accelerates quickly and steadily forward,
maintaining a straight course, driving nor-
mally.”

Fig. 4: Qualitative language following performance across various scenes. GT denotes the ground-truth trajectory from the
dataset. Pred represents the predicted trajectory conditioned on the original meta-action command. New shows the predicted
trajectory in response to a newly specified meta-action command. (a) and (b) evaluate the VLA’s ability to follow coarse-grained
instruction, such as turning left vs. right or accelerating vs. decelerating. (c) evaluates fine-grained instruction following,
involving subtle distinctions like accelerating quickly vs. slowly.
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Fig. 5: An overview of the label refinement and evaluation
dataset auto-labeling pipeline. We leverage trajectory infor-
mation in hindsight and a powerful VLM to perform large-scale
meta-action label refinement and generation of an evaluation
dataset.

B. Low-Level VLA Policy Evaluation

To evaluate trajectory prediction, we compare SteerVLA with
the DriveGPT4 baseline [27], using the same BDD-X train/test
splits. Since DriveGPT4 does not take language input, we also
report SteerVLA’s performance without language instructions.
As shown in SteerVLA significantly outperforms
DriveGPT4 in both speed and turning angle prediction.

To evaluate instruction-following, we conduct an ablation
study across three settings: (i) without language instructions
(SteerVLA w/o lang), (ii) with raw BDD-X instructions
(SteerVLA w/ lang), and (iii) with refined instructions generated
by our meta-action autolabeling pipeline (SteerVLA w/ refined
lang). As shown in[Table TI] incorporating language consistently
improves trajectory prediction. While the refined instructions
yield only modest improvements in ADE/FDE over raw
instructions, they lead to significantly better performance in
human evaluation, as shown in

To better capture instruction adherence, we conduct a

manual evaluation on 20 rollouts per model. For each rollout,
human annotators assess whether the predicted trajectory
aligns with the given instruction. Unlike ADE/FDE—which
are strict L.2-based metrics measuring deviation from ground-
truth trajectories—human evaluation directly assesses whether
the control behavior matches the intended semantics of the
instruction. This is particularly important in cases where the
predicted trajectory deviates from the ground truth but still
satisfies the instruction. Our refined instructions explicitly
encode such behavioral cues, enabling more expressive and
interpretable control, which in turn results in more instruction-
aligned driving behavior.

Method Speed (m/s) | Turning angle (degree)
RMSE| RMSE|
DriveGPT4 [27] 1.30 8.98
SteerVLA w/o lang 0.57 2.39
SteerVLA w lang 0.53 2.16

TABLE I: Comparison of our VLA policy (with and
without language instructions) and DriveGPT4 on trajectory
prediction. SteerVLA significantly outperforms DriveGPT4 in
both speed and turning angle prediction.

C. High-Level Planner Evaluation

We use Gemini 2.0 Flash as the VLM to perform zero-shot
high-level planning. To quantitatively assess the quality of the
generated meta-action plans, we report BERTScore, BLEU,
and ROUGE-L against ground-truth meta-actions in
We also evaluate the full pipeline, in which the high-level
planner generates meta-action plans that serve as language
instructions for the VLA policy. As shown in using
planner-generated meta-actions improves performance over the
no-language baseline, although it underperforms compared to
manually labeled instructions. This performance gap likely
stems from occasional inaccuracies or ambiguities in the zero-
shot plans. Detailed results are provided in Appendix [A] As



l!ﬁp’

e

!
TT WETD

. .
13 ‘B
— = i :
“l am carryi ‘J 3
ying a cup of o !
coffee, go slowly” 7 1
/~
Q <.
e A
\ 4

(a) When prompted with “I am carrying
a cup of coffee, go slowly”, SteerVLA
predicts cautious meta actions and executes

the turn at a reduced speed. sharp turn.

(b) When prompted with “I am in a rush to
get to work!”, SteerVLA predicts aggres-
sive behavior and successfully executes a

E

“I just finished the
coffee and amina
8 rush to get to work!”
i =

(g
|
il
1
=
I

“l am carrying a cup of
coffee, go slowly”

LN
% ]

O
O

: : SRS
T R

- ape 8 w

(c) Our policy can also adapt its behavior

on the fly, responding to each of the
behaviors described in (a) and (b).

Fig. 6: Qualitative evaluation in CARLA. We evaluate SteerVLA across task variations, demonstrating its ability to infer user

intent and adapt its behavior accordingly.

Method ADE (m) | FDE (m) |

1s 2s 3s 1s 2s 3s

SteerVLA w/o lang 045 1.08 197 | 0.67 213 433
SteerVLA w/ lang 040 098 1.77 | 0.60 192 3.89
SteerVLA w/ refined lang | 0.39 096 1.75 | 0.59 1.90 3.86
SteerVLA w/ planner 043 1.04 1.89 | 066 205 4.16

TABLE II: Trajectory prediction accuracy at 1s, 2s, and 3s
horizons. Incorporating language improves prediction accuracy,
with refined instructions yielding slightly better ADE/FDE
than raw instructions. Though modest, these gains reflect more
semantically aligned control behaviors, as supported by human
evaluation in Meta-actions generated by the high-
level planner also enhance performance over the no-language
baseline, though a gap remains compared to using manually
refined instructions.

Method | All (%) | Turns (%) | Speed Changes (%)
SteerVLA w/o lang 11720 2/20 4720
SteerVLA w/ lang 16/ 20 7120 9720
SteerVLA w/ refined lang | 18 / 20 15720 16/20

TABLE III: Human evaluation of instruction adherence
across behavior types. “All" includes 20 uniformly sampled
rollouts; “Turns" and “Speed Changes" focus on instructions
involving turning or speed modulation. Language improves
adherence, with refined instructions yielding the highest align-
ment.

future work, we plan to fine-tune a VLM such as Gemma 3
[23] to serve as a dedicated high-level planner with improved
task grounding.

D. Closed-Loop Results in the CARLA Simulator

To evaluate the closed-loop capabilities of SteerVLA, we
conduct a qualitative analysis in the CARLA simulator, as
shown in We demonstrate that the policy can be

effectively steered by user-specified instructions, adapting to
changing user preferences in real time and exhibiting diverse
behaviors.

We collect 4,000 trajectories in CARLA, each lasting 10-30
seconds. A rule-based annotator assigns one of ten meta-actions
to each interval, while CARLA agent parameters are varied to
emulate aggressive, normal, and cautious driving styles. The
map, weather, and spawn points are randomized to maximize
scenario diversity. We follow the same training pipeline used
for the refined BDD-X dataset.

For inference, we use Gemini as the high-level planner, which
receives the egocentric image stream, persona, current vehicle
state (speed, steering, throttle, brake), and dialogue history.
The planner is queried for a new meta-action after each action
chunk is executed (prompts are provided in [Appendix A). We
use CARLA’s Ackermann control interface to translate the
actions into simulator commands.

Method | BERTScore | BLEU | Rouge-L

Gemini 2.0 Flash | 0.45 | 005 | 030

TABLE IV: Evaluation of the meta-action command quality
generated by the high-level planner using BERTScore, BLEU,
and ROUGE-L metrics.

V. DISCUSSION

We present SteerVLA, a hierarchical vision-language-action
(VLA) model for autonomous driving that addresses the
challenge of generating steerable low-level driving behavior
from nuanced, high-level user specifications. By decomposing
the problem into a high-level language-based reasoning step and
a low-level action generation step—and using structured meta-
actions as the interface between them—SteerVLA leverages
powerful vision-language model (VLM) priors to interpret
behavioral instructions in language space before producing raw
control actions.



To train this hierarchical policy, we introduce a novel auto-
labeling pipeline that generates plausible high-level behavior
specifications and meta-action annotations from unlabeled self-
driving datasets. This enables SteerVLA to respond effectively
to complex, unstructured language prompts, including those
unseen during training.

Limitations and Future Work. While our early results
are promising, the current version of SteerVLA has several
limitations. First, the quality of autolabeling is constrained by
the capabilities of the underlying VLM. Although labeling
based on video snippets would be ideal, current VLMs
still struggle with dynamic, temporally grounded reasoning
compared to static scene understanding. In future work, we
aim to bootstrap driving-specific dynamic reasoning capabilities
into the labeling pipeline.

Second, the model’s flexibility is currently limited by the
predefined meta-action space, which serves as the sole interface
between the high-level and low-level policies. We plan to
investigate training a unified, end-to-end “chain-of-though”
policy that jointly models high-level intent and low-level
execution.

Lastly, we see an opportunity to incorporate techniques
such as reinforcement learning from human feedback (RLHF)
to improve the alignment of the high-level planner with
user preferences and downstream driving behavior. We hope
that future extensions of SteerVLA will build upon these
directions to enhance its adaptability and human-aligned
decision-making.
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APPENDIX

Listing 1: BDDX refinement prompt.

# Driving Behavior Refinement Prompt

You are an expert in vehicle dynamics and driving
behavior analysis. Your task is to interpret
natural language descriptions of driving
behavior by analyzing vehicle ego state data (
speed and course over time). Your response must
include two parts:

1. »xEgo State Analysis** — a brief explanation of
observed speed and course trends over time.
2. xxRefined Driving Behavior Descriptionx* — a more

specific version of the original description,
enhanced with motion extent and driving style.

You are an expert in vehicle dynamics and driving
behavior analysis. Your task is to interpret and
refine natural language descriptions of driving
behavior by analyzing vehicle ego state data (
speed and course over time) to produce a *xx*

precise and nuanced behavior summaryxx. Your
output should describe:

1. »xEgo State Analysis** — a brief explanation of
observed speed and course trends over time.

2. xxRefined Driving Behavior Descriptionx* — a more

specific version of the original description,
enhanced with a meaningful modifier _(e.g., *=*
smooth turningxx, **wide turnx*, xxabrupt stop
*x, *x*steady lane keepingxx)_ and a *xdriving
stylex*, reflecting the driver’s attitude or
intent
_(e.g., **cautiouslyx*x,
aggressivelyxx*)__

*xnormally**, *xx*

## Input Format

**xDriving Description:*x*
INSERT_BEHAVIOR_DESCRIPTION

**xEgo Vehicle States:*x*
INSERT_EGO_STATE_SEQS

These ego states reflect how the vehicle moved
during the described behavior.

> xxNote:xx

> — xxCourse increasingx*x

rightxx*

> — xxCourse decreasing*x ——> vehicle is turning x=*
leftx*

——> vehicle is turning *x*

## Output Guildlines
Your response should contain two sections:

### 1. Ego State Analysis

Analyze the speed and course sequence:

— Describe speed patterns: Is the vehicle
accelerating, decelerating, or maintaining speed
?

— Describe course patterns: Is the vehicle turning
sharply, smoothly, or going straight?

— Mention time duration and total changes in course
or speed.
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### 2. Refined Driving Behavior Description

Produce a single, natural-language sentence that:

— Refines the driving description with motion extent

(e.g., xsmoothx, #*sharpx*, xwidex, =*slightx)

- Adds driving style (e.g., xcautiouslyx, *normally
*, *xaggressivelyx)

- Grounding the refinement in the observable
patterns of the ego vehicle states

## Notes

— The refined description must not exceed xx20 words
* K,

— Use x*speed trends*x to judge acceleration or
deceleration patterns.

— Use x*course change patterns** to assess turning
sharpness or trajectory smoothness.

— If the style cannot be confidently inferred,
default to *x"normally"xx.

- Use **natural, human-readable languagex*-avoid
unnecessary technical jargon.

## Output Format (REQUIRED)

Respond xxonlyxx with a valid JSON object in the
following structure (do not include any other
text outside the JSON block) :

AURTRY

{
"ego_state_analysis": "<Short paragraph analyzing
speed and course trends>",
"refined_description": "<One complete sentence
with refined behavior and driving style within
20 words>"

json

Listing 2: Example High-level VLM planner prompt.

Prompt :

You are an autonomous driving assistant. Your task
is to generate a driving behavior plan based on:

A front-view camera image

The current speed of the vehicle

A high-level driving command (e.g.,
stop, turn left, turn right)

A persona describing the driver’s intent or external
conditions (e.g., cautious driving due to rain)

Inputs:

Image: See Fig. 5

High-level command: turn left

move forward,

Persona: It’s snowing, so I'm being careful to avoid
slipping.
Output:

Produce a driving behavior plan
words) that includes:

Speed behavior - Will the vehicle accelerate,
maintain speed, or decelerate?

Heading behavior - Describe the expected heading
change (e.g., continue straight, turn slightly
right, make a sharp left).

Driving style - Reflect the persona (e.g.,
cautiously, smoothly, assertively).

Respond with a single natural language sentence
summarizing the driving behavior.

Example Output:

"The car decelerates smoothly and prepares for a

(no more than 20

Video: 136f3alf-13c48056 - Chunk 0 (Frames 0-12)
Concatenated Frames

top-doun trajectory
Vehicle Bird's Eye View Trajectory

xposton )

Speed us Time

rga3mps

Spec (mps)

ime (seconds)

Course vs Time

— Local Course
GlobalCoure

10 satasat B4

Refined action: The car ols through the stop sign vith a slight right tum, accelerating
gradually, drving normally.

Speed (mps): Avg=4.3, Min=2.5, Max=8.8
Local Course (*): Aug=83.3, Min=0.0, Max=359.9

GT: The car rolls through a stop sign

(a) Starting with the label “The car accelerates slowly”, we can
augment with additional information from the vehicle’s states to get
the label “The car rolls through the stop sign with a slight right turn,
accelerating gradually, driving normally.”

Video: 0814c9ab-alba9412 - Chunk 4 (Frames 48-50)
Concatenated Frames.

top-doun trajectary
Vehicle Bird's Eye View Trajectory

Speed: 6,1 mps oo
Course: 359.6

Speed vs Time

Course vs Time

o
GlobalCoure

Aolocl 203

e (seconds)

FRefned action: The car decelerates smoothly e lighty adjusting course right. aiving
Gautiously.

Speed (mps): Avg=5.1, Min=5.4, Max=6.1
Local Course (°): Avg=120.3, Min=0.2, Max=359.6.

GT: The car slows down

(b) Starting with the label “The car slows down”, we can augment
with additional information from the vehicle’s states to get the label
“The car decelerates smoothly while slightly adjusting course right,
driving cautiously.”

Fig. 7: Examples of refining the BDD-X labels to train a more
steerable low-level policy.



slight right turn, driving normally.",

Listing 3: Example High-level VLM planner output.

Output: ‘‘The car will cautiously decelerate, making
a slow, wide left turn due to snowy conditions

rr
. 4

where the ground truth is “The car makes a smooth left turn,
decelerating then accelerating, with normal driving style.”,

Fig. 8: The input image of the high-level planner.

Listing 4: Persona generation prompt

# Driving Behavior Interpretation Prompt

You are an expert in interpreting driving behavior.
Given a natural language description of a
vehicle’s behavior, extract two things:

1. xxHigh-Level Commandx* select one of the
following discrete options:
- ‘Move forward®
- ‘Stop/Slow down'
— ‘Turn left?
— ‘Turn right?®

2. *xPersonaxx write a vivid, one-sentence first-
person description of the driver’s likely
motivation or situation. The persona should
reflect the internal reasoning or external
circumstances influencing how they drive. Use
natural language that includes emotional or
situational cues (e.g., urgency, responsibility,

distractions, time pressure, purpose of the
trip) . Avoid generic or purely factual
statements-make the driver feel like a real
person in a specific moment.

3. *xReasoning*x Provide a brief explanation
connecting the driving behavior description, the
dashcam view, your selected persona, and your
chosen high-level instruction. Explain how these
elements logically support each other.

## Notes

### For Persona:

- The persona must be plausible based on both the
actions taken by the vehicle and the
surroundings of the vehicle.

— Otherwise, if it is not definitive whether the
surroundings fit the description (e.g. the

behavior describes a baby in the car, but a baby
would not be visible from a dashcam), the
option is fine to propose.

— The persona must align with the style (e.g.

aggressive, cautious, normal) of the driving

description.

— The persona must differ from the examples of

possible personas.

— The persona must provide a long-horizon reason for
the car behavior over its whole trajectory (and
therefore must NOT be dependent on things like

stop signs, traffic lights)

— Assume that the driver is experienced.

— The persona should describe a legal scenario.

However, do not include any legal jargon or
references to the law in the language of the

persona.

### For High-Level Instruction:

— For the high level command, base your selection *x*
only** on the textual driving description and
the dashcam view.

— For the high level command, turning is defined as
a full turn at intersections.

— If the car is moving leftward or rightward because

it is simply following a curve in the road or
slightly adjusting within the lane, this should
be categorized as either moving forward or
slowing/stopping.

- Possible explanations for a car moving forward
include "Traffic light is green", "Follow
traffic", and "Road is clear".

- Possible explanations for a car stopping/slowing
include "Traffic light", "Traffic sign", "
Obstacle ahead"

— Possible explanations for a car turning left
include "On the left-turn lane", and "Traffic
light allows"

### For Reasoning:

— Connect the behavior description, dashcam visual
elements, persona motivation, and instruction
choice

- Explain how the persona logically leads to the
observed driving behavior

— Reference specific elements from both the text
description and visual scene

## Input Format

Driving Behavior Description: <description here>

## Output Format

Router Command: <one of: move forward | stop | turn

left | turn right>
Persona: <one-sentence persona in first person>
Reasoning: <brief explanation connecting behavior,
image, persona, and instruction>

## Examples of possible personas

I'm trying to avoid slipping because the weather
conditions are not the best for driving.

The car is driving on an open road, so I am speeding
quickly through the streets.

I'm an uber driver and my passenger is prone to
carsickness.

My wife is giving birth, so I'm trying to get to the
hospital as quickly as possible.



It’s 8:55 AM and I'm going to be late for a very
important meeting.

My baby is sleeping in the back seat, and I’'m
driving gently so that I don’t wake them up.

There are many pedestrians around, so I’'m making
sure to drive carefully.

I am going to be on the highway for a while, so I'd
like to use the leftmost lane.

## Now, process the following:
Driving Behavior Description: {refined_annotation}
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