
ReWiND: Language-Guided Rewards
Teach Robot Policies without New Demonstrations

Jiahui Zhang⋆1, Yusen Luo⋆1, Abrar Anwar⋆1,
Sumedh A. Sontakke2, Joseph J. Lim3, Jesse Thomason1, Erdem Bıyık1, Jesse Zhang1

Collect

Small Demo Dataset

+

Dispose Trash

Handover Cup

Pick up Mug

Robot Traj. Lang Instr.
Uncap Pen

1. Pre-Train

Policy

Reward Fn

2. Learn New Task

at

ot

Label
Rew: rt

Ta
sk

 L
an

gu
ag

e

Reward Fn

Policy

Fig. 1: We pre-train a policy and reward model from few language-labeled demos to solve unseen task variations via lang-guided RL without new demos.

Abstract—We introduce ReWiND, a framework for learn-
ing robot manipulation tasks solely from language instructions
without per-task demonstrations. Standard reinforcement learning
(RL) and imitation learning methods require expert supervision
through human-designed reward functions or demonstrations
for every new task. In contrast, ReWiND starts from a small
demonstration dataset to learn: (1) a data-efficient, language-
conditioned reward function that labels the dataset with re-
wards, and (2) a language-conditioned policy pre-trained with
offline RL using these rewards. Given an unseen task variation,
ReWiND fine-tunes the pre-trained policy using the learned
reward function, requiring minimal online interaction. We show
that ReWiND’s reward model generalizes effectively to unseen
tasks, outperforming baselines by up to 2.4× in reward gener-
alization and policy alignment metrics. Finally, we demonstrate
that ReWiND enables sample-efficient adaptation to new tasks,
beating baselines by 2× in simulation and improving real-world
pretrained bimanual policies by 5×, taking a step towards
scalable, real-world robot learning. See website at https://rewind-
reward.github.io/.

I. INTRODUCTION

A great teacher does not just tell you if you are right or
wrong. Instead, they guide you by providing feedback when
you make mistakes, highlighting progress as you learn some-
thing new, and adapting to how you learn best. For deployed
robots to learn new tasks in the wild, they need similarly
intelligent teachers. These teachers—in the form of robust
reward models—should: (1) offer dense, informative feedback,
especially during failures; (2) generalize their guidance to
unseen tasks; and (3) remain robust to diverse robot behaviors
during its learning process. Our paper leverages these insights
to develop reward models that can teach robots unseen tasks.

In this work, we introduce ReWiND (Rewards Without
New Demonstrations), a framework designed to teach robots
unseen tasks in a sample-efficient manner using only a few
grounding human demonstrations for training tasks (see Fig-
ure 1). Typically, teaching robots involves large-scale imitation
learning [1]–[4], where human experts provide demonstrations
for each new task. However, collecting task-specific demon-
strations is expensive and time-consuming. Reinforcement
learning (RL) offers a more autonomous alternative by using

1University of Southern California, 2Amazon Robotics, 3KAIST

reward functions as teachers, allowing robots to learn through
interaction. Yet, manually designing these reward functions
demands substantial manual effort and domain-specific ex-
pertise [5]. Recent progress in language-conditioned reward
learning [6]–[15] has aimed at addressing these challenges,
but often assumes unrealistic conditions such as availability of
ground-truth states [7]–[12], thousands of demonstrations [13],
or online training of reward models from scratch [14], [15],
limiting their practical applicability.

ReWiND overcomes these challenges by instead assuming
only a handful of demonstrations—e.g., five per task—to
enable real-world robot learning of unseen task variations.
ReWiND first trains a language-conditioned reward model
from these demonstrations, then uses it to pre-train a language-
conditioned policy via offline RL. When deployed, ReWiND
efficiently fine-tunes the policy on new task variations by
reward-labeling online interaction episodes.

Our core contribution is in designing ReWiND’s reward
model to capture three key properties outlined earlier: dense
feedback, generalization, and robustness. First, to provide
dense, informative feedback, we design a cross-modal sequen-
tial aggregator that predicts progress within demonstration
videos. Progress prediction offers a densely supervised training
signal that naturally translates into rewards. We also introduce
video rewinding to automatically generate failure trajectories
from successful demos, allowing ReWiND to provide dense
feedback even when the policy is making mistakes. Then, to
encourage generalization across unseen tasks and robustness
to diverse behaviors, we train the cross-modal sequential
aggregator with pre-trained vision and language embeddings,
selectively applied positional embeddings, and diverse robotics
data from Open-X dataset [16] . Focusing on these properties
enables ReWiND rewards to extrapolate to novel visual and
language inputs.

We introduce reward metrics measuring the above properties
on which ReWiND achieves 23-74% relative improvements
over reward learning baselines. Further, comprehensive suc-
cess rate evaluations on Metaworld manipulation tasks and a
real-world bimanual robot setup demonstrate ReWiND beats
baselines by 2x in simulation and improves real-world pre-
trained policies by 5x.

https://rewind-reward.github.io/
https://rewind-reward.github.io/

Reward Function

(a) Train Reward Model (b) Pre-train Policy
Offline

(c) Learn New Tasks
Online

Reward Rψ(o1:t, z)

Open-X Subset
𝒟open-x

Demos 𝒟demo

+

Robot
Trajs

Language
Instr.

Uncap Pen
Train

Video and Text Augmentation

PolicyLabel Rew
̂rt = Rψ(o1:t, z)

Lang-Conditioned Offline RL

(ot, at, ̂rt, ot+1, z)

𝒟demo

 “Dispose Trash”z1 :
τ1 o1, a1, o2, a2, o3, a3, . . .

 “Handover Cup”z2 :
τ2 o1, a1, o2, a2, o3, a3, . . .

 “Dispose Trash”z3 :
τ3 o1, a1, o2, a2, o3, a3, . . .

at ot

New Instr. znew

Label
Rew

Frozen
Training

Policy

Rψ(o1:t, znew)

Dispose Trash

Handover Cup

Pick up Mug
LLM

Instruction Generation

Dispose Trash
Throw Away Garbage

Put Waste in Can

Cross-Modal Sequential Aggregator

Image EmbedsLang Embed

̂r1, . . . , ̂rT

Video Rewind
Increasing Progress

Fr
am

es

21 3 4 3 2

Decreasing
Rψ(o1:t, znew)

z

o1:t Pr
e-

Tr
ai

ne
d

Ba
ck

bo
ne

s

+
Pos.

Embed

MLP

Fig. 2: (a): We train a reward model Rψ(o1:t, z) on a small demonstration dataset Ddemos and a curated subset of Open-X,
Dopen-x, augmented with LLM-generated instructions and video rewinding. Rψ(o1:t, z) predicts video progress rewards r̂1:T
from pre-trained embeddings of image observations o1:T and language instructions z, and assigns 0 progress to misaligned
video-language pairs. (b): We use the trained Rψ(o1:t, z) to label Ddemos with rewards and pre-train a language-conditioned
policy using offline RL. (c): For an unseen task specified by znew, we fine-tune π with online rollouts and reward labels from
Rψ(o1:t, znew).

II. REWIND: LEARNING REWARDS WITHOUT NEW
DEMONSTRATIONS

We study the problem of learning unseen, language-
specified tasks in a target environment, formulated as a Markov
decision process (MDP). The target environment refers to the
deployment scene (e.g., a robot tabletop). We train a policy
πθ(at | ot, z) that selects actions at based on images ot and
language instructions z.The policy is optimized to maximize
rewards predicted by a learned reward function Rψ(o1:t, z),
which conditions on the frame sequence o1:t and instruction
z to output per-timestep estimated rewards r̂t. We assume
access to a small demonstration dataset Ddemos in the target
environment containing 15–20 tasks with ∼5 demonstrations
each. Following prior definitions of generalization [17], [18],
we define a task as unseen if it requires a novel action
sequence, its distribution of image observations has changed,
or needs a new language instruction.

ReWiND consists of 3 phases (see Figure 2): (1) learning a
reward function from limited target environment demos, then
(2) pre-training π with learned rewards on the demos, and
finally (3) using the reward function and pre-trained policy to
learn a new language-specified task online.

A. Learning a Reward Function

Our primary objective for reward prediction is regressing
directly to per-frame progress within an observation sequence
o1:T conditioned on instruction z. Unlike prior methods us-
ing relative targets [13], [19], our progress-based objective
provides fixed targets that are more stable to train on, and
translates directly into a dense, [0, 1]-normalized reward for
policy training. To ensure robustness against mismatched
observations and instructions, we also sample unrelated ob-
servation sequences oother

1:T and train Rψ(o1:t, z) to predict zero
progress. Our reward prediction loss is:

Lprogress(o1:T , z, o
other
1:T) =

T∑
t=1

Rψ(o1:t, z)− t/T︸︷︷︸
matched seq. progress


2

+

T∑
t=1

Rψ(o
other
1:t , z)2︸ ︷︷ ︸

mismatched seq. 0 progress

.

(1)

However, simply training a neural network Rψ(o1:t, z) on
Lprogress(o1:T , z, o

other
1:T) with a small set of demonstrations is

unlikely to ensure that it can train a policy on unseen tasks.
Rψ(o1:t, z) should:
D1 Generalize to new tasks, i.e., new policy execution

videos and instructions not in Ddemos.
D2 Produce rewards aligned with policy rollouts, not just

successful demonstration videos.
D3 Be robust to input variations, i.e., different ways to

solve or specify the task.
To this end, we introduce a set of design choices spanning

the training dataset, model architecture, and video and lan-
guage augmentations that address all three desiderata. Specif-
ically, we curate diverse off-the-shelf data from the Open-X
dataset [16] to promote generalization (D1) and robustness
(D3); apply targeted video and language augmentations for
better reward prediction and language input robustness (D2,
D3); and adopt specific network architectural modifications
aimed at improving generalization (D1). For a visual overview,
see Figure 2a.

Incorporating Diverse Data (D1, D3). To help Rψ(o1:t, z)
generalize to tasks unseen in Ddemos (D1) and make it robust
to diverse ways of executing and specifying tasks (D3),
we subsample the Open-X Dataset [16], denoted Dopen-x.
We specifically select Open-X trajectories with object-centric
language instructions, e.g., “pick coke can from fridge,” or
directional instructions, e.g., “drag the circle to the left of
the star,” to help Rψ(o1:t, z) generalize to objects and di-
rections not contained in Ddemos. This dataset contains ∼356k

trajectories with ∼59k unique task strings. For detailed dataset
information, see Section A-A1.

1) Video and Language Augmentation (D2, D3): Given our
datasets Ddemos and Dopen-x, we perform both video and lan-
guage augmentations that help the reward function accurately
predict rewards for unsuccessful policy execution videos (D2)
and be robust to varied ways of specifying the task instructions
z (D3). We call the video augmentation video rewind and our
text augmentation instruction generation.

Video Rewind. Both Ddemos and Dopen-x contain human
demonstrations, which are assumed to be successful and of
high-quality. Training Rψ(o1:t, z) on Lprogress(o1:T , z, o

other
1:T)

only using these successful demonstrations, may result in
Rψ(o1:t, z) overfitting to these successful trajectories. How-
ever, during online deployment, Rψ(o1:t, z) will likely en-
counter failure trajectories (unseen during training) which
such an overfit model may reward highly. This is undesirable
and prior works attempt to address this issue by explicitly
training their reward model on failed trajectories [13], but these
trajectories add a great additional burden on demonstrators to
collect and must be added post-hoc to any existing dataset,
making it harder to scale.

Instead, we address this problem in a scalable manner
by randomly rewinding videos. Consider a video of a robot
picking up a cup. If we rewind the video for a few frames
right when the robot grabs the cup, it now looks like one in
which the robot attempted to grasp the cup and then dropped
it.1 By training Rψ(o1:t, z) to predict rewards corresponding to
reverse progress on the rewound subsequence, it (1) is trained
on observation sequences mimicking failed policy rollouts that
will occur during online RL, and (2) learns to decrease reward
when necessary. Thus rewinding helps Rψ(o1:t, z) reward a
policy’s failures which will help with online RL (D2). See
Figure 3 for an example. Formally, rewinding means sampling
a random split point i within an observation sequence o1...oT ,
rewinding k (k is also sampled) frames, then concatenating
those k frames to the end of the original sequence to become
o1...oi, oi−1, ..., oi−k. The remaining frames from i + 1 to T
are then unused. Our video rewind training objective follows:

Lrewind(o1:T , z) =

i∑
t=1

(
Rψ(o1:t, z)−

t

T

)2

︸ ︷︷ ︸
Loss for original trajectory until i

+

k∑
t=1

(
Rψ([o1:i, oi−1:i−t], z)−

i− t

T

)2

︸ ︷︷ ︸
Rewound video for k frames from i−1

.

(2)

Instruction Generation. We also generate 5-10 additional
language instructions for each task in Ddemos by prompting an
LLM. This augmentation helps Rψ(o1:t, z) with input robust-
ness to possible new task instructions (D3). While training
Rψ(o1:t, z), any time we sample an observation sequence
o1:T , its instruction z is uniformly randomly sampled from

1Random rewinding may result in some physically implausible sequences.
However, since they won’t appear during inference, the rewards produced by
Rψ(o1:t, z) for such sequences should not affect online RL.

Successful
Traj.

3 2

o1:6

5 6

Split at i = 4 Rewind k = 2

21 3 4

Increasing Progress Decreasing

2/61/6 3/6 4/6 3/6 2/6
Progress

Target

21 3 4Rewound
 Traj.

Vi
de

o
Re

w
in

d

[o1:4, o3:2]

Fig. 3: Video rewind. We split a demo at intermediate timestep
i into forward/reverse sections. Here, the forward section
shows the robot approaching the cup; the reverse section
(oi−1, oi−2, . . .) resembles dropping it.
all available matching instructions, generated or original. We
did not augment Dopen-x due to its instruction diversity.

2) Architecture (D1): Due to the limited size of Ddemos, we
carefully design the architecture for Rψ(o1:t, z) to maximize
generalization to new tasks (D1) while retaining the ability to
optimize Lprogress(o1:T , z, o

other
1:T) well.

Frozen Input Encoders. We use frozen image and language
encoders as the backbone of Rψ(o1:t, z): we use DINOv2 [20]
for image encoding due to its strong object-centric repre-
sentations and all-MiniLM-L12-v2 [21] for instruction
encoding due to its small embedding size (= 384). In
Rψ(o1:t, z), we first encode images and instructions: oembed

1:t =
DINO(o1:t), z

embed = MiniLM(z). Then, we train a small
cross-modal sequential aggregator transformer conditioned on
(oembed

1:t , zembed) that learns to aggregate frozen language and
image embeddings to generate progress rewards r̂t directly
(see Figure 2(a) in the “Reward Function” box).

Positional Embeddings. Finally, the cross-modal sequential
aggregator’s transformer requires positional information about
the frames to properly predict rewards (e.g., for distinguishing
“pull” vs. “push”). However, if we naı̈vely add positional
embeddings to each image, it can “cheat” by predicting
progress using the positional embeddings. Therefore, similar
to how [22] prompt an LLM with the position of the first video
frame, we add a positional embedding to the first image.

Reward Model Summary. In summary, ReWiND trains a
reward function Rψ(o1:t, z) to predict task progress, using data
augmentation (video rewinding and instruction generation) and
additional Open-X data (Dopen-x) to improve generalization.
For full implementation details, see Section A-A2. The final
objective is:
min
ψ

E(o1:T ,z,oother
1:T)

[
Lprogress(o1:T , z, o

other
1:T) + Lrewind(o1:T , z)

]
. (3)

B. Policy Learning

Pre-training. After training Rψ(o1:t, z), we pre-train
πθ(at | ot, z) on demonstrations Ddemos labeled with rewards.
This pre-training guides πθ(at | ot, z) toward reasonable
behaviors during exploration, even if downstream tasks differ
from those in Ddemos. Given a trajectory with instruction z,
{(ot, at)}T1 , we assign rewards r̂t = Rψ(o1:t, z) at each
timestep and add success bonus to the final reward to encour-
age reaching the goal despite possibly noisy reward signals:

r̂off
t = Rψ(o1:t, z) + rsuccess · 1[t = T]. (4)

We then train πθ(at | ot, z) via offline RL using tuples
(ot, at, r̂t, ot+1, z). We use IQL [23] as prior work has demon-
strated it works on real robots [24]–[26]. See Figure 2(b) for
an overview.

Learning Online. To learn a new task online, ReWiND only
requires a language description of the task, znew. ReWiND rolls
out π(a | ot, znew) and fine-tunes it on rewards coming from
Rψ(o1:t, znew). Like prior work [13], [19], we assume access
to a success signal during online RL. We use this signal to give
rsuccess bonuses similar to in pre-training.2 Our online rewards
r̂on are:

r̂on
t = Rψ(o1:t, z) + rsuccess · 1[success at t]. (5)

See full implementation details in Section A-A and pseu-
docode in Algorithm 1.

III. EXPERIMENTS

Our experiments aim to study the efficacy of ReWiND as
a reward learning pipeline, evaluate its ability to train robots
to learn new tasks efficiently, and analyze its design choices
and limitations. To this end, we organize our experiments to
answer the following empirical questions, in order:

(Q1) Rewards: How well do ReWiND rewards correlate with
task progress and success?

(Q2) Policy Learning: Can ReWiND quickly train policies for
new tasks?

(Q3) Ablations and Analysis: Which ReWiND design deci-
sions are most significant?

A. Q1: What Makes a Good Reward Function?

We repeat the desiderata from Section II-A that we set out
to achieve with ReWiND: (1) generalization to new tasks,
(2) rewards aligned with videos from policy rollouts, and
(3) robustness to diverse inputs. We structure this section to
demonstrate ReWiND’s ability to satisfy these criteria.

We compare ReWiND-learned rewards against all relevant
reward learning baselines: LIV [32] is a robotics reward model
pre-trained on EpicKitchens [33], we also fine-tune LIV on
Ddemos (LIV-FT); RoboCLIP [6] uses a pre-trained video
language model, S3D [34] trained on HowTo100M [35], to
reward agents for language specified tasks; Video-Language
Critic (VLC) [13] fine-tunes a VLM with a sequential ranking
objective to encourage frames later in the video to have higher
rewards. We train it on Ddemos; Generative Value Learning
(GVL) [22] prompts a pre-trained Gemini LLM [36] with
shuffled frames to predict per-frame progress.

We conduct our primary reward analysis using the sim-
ulated Metaworld benchmark [37] because it enables effi-
cient collection of exemplar failed and partially successful
rollout videos for analysis. Smaller-scale real-world analyses,

2Success bonuses can come from a human supervisor [27], learned
function [28], or LLM [29]. Our experiments assume a human supervisor
because manual resets are required regardless. While we could threshold
Rψ(o1:t, z) outputs to automatically determine success, unseen evaluation
task reward ranges can vary, rendering this approach ineffective. Future work
could integrate ReWiND with methods reducing human resets [30], [31] and
automatic success detectors for truly autonomous RL.

RoboCLIPLIV LIV-FT GVLVLC ReWiNDReWiND w/o OXE

In
cr

ea
si

ng

Re
w

ar
d

U
ns

ee
n

Ta
sk

Tr

aj
ec

to
ry

 V
id

eo
s

Unseen Task Language Instructions

Fig. 4: Video-Language Reward Confusion Matrix. For
each unseen Metaworld task, we compute rewards for all com-
binations of demonstration videos and language descriptions.
ReWiND produces the most diagonal-heavy confusion matrix,
indicating strong alignment between unseen demos and in-
structions. See Section D-A for train task results, Section D-C
for real-world results.

strongly aligned with simulation, are in Section D-C. For
fair comparison, we include a variant of ReWiND trained
without Dopen-x (ReWiND w/o OXE). Results are evaluated on
17 unseen Metaworld tasks. These tasks are visually similar
to training tasks but require new motions to solve (e.g.,
Door-Open → Door-Close). We average metrics across
5 demos per task.

Generalization. Next, we evaluate how consistently rewards
reflect progress over time in successful, unseen demonstra-
tions. We report Pearson correlation (r) of each model’s
reward against time, and Spearman’s rank correlation (ρ),
which, unlike r, captures monotonicity regardless of linearity.
As shown in Table I(a), ReWiND again outperforms all
baselines—achieving a 30% relative improvement in r and
27% in ρ over the best alternative (VLC).

Policy Rollout Reward Alignment. We also find that
ReWiND can properly reward failed policy rollouts, which is
important for rewarding RL policies on unseen tasks. For each
task, we train an SAC [38] policy from scratch and use tra-
jectories collected from various points of training to construct
three evaluation video datasets: failure, near-success,
and success containing failed trajectories, trajectories where
the policy was close to the goal state but did not succeed, and
successful trajectories, respectively. Each task has 2 trajecto-
ries of each type.

We evaluate each dataset’s relative alignment ranking (mea-
sured by Spearman’s ρ) with each reward model. For example,
for a given task, if the average reward for a failure video is
0.1, a near-success video is 0.5, and success video is
0.9, then the rankings would be 1, 2, 3, respectively, where 3
corresponds to the best ranking. Thus, ρ over the rankings tells
us how often the videos are correctly ranked. We report the
ranking ρ in Table I(b). We also report the average difference
between rewards for success with near-success and
near-success with failure videos. Overall, likely due
to video rewinding, ReWiND has a relative 74% improvement
in reward order and 58% improvement in reward differences
over the best baseline, LIV-FT. Additionally, we qualitatively
demonstrate how these rankings translate into policy rollout
rewards in Appendix Figure 7 by plotting per-frame reward
curve predictions of ReWiND against reward baselines for an
unsuccessful policy rollout.

Robustness to Varied Inputs. Finally, we demonstrate
ReWiND’s robustness to diverse instructions. For each evalua-
tion task, we manually create three additional language instruc-

TABLE I: Combined Evaluation Metrics. Comparison of reward models across three axes: (1) Demo Video Reward Alignment,
(2) Policy Rollout Reward Ranking, and (3) Input Robustness.

Category Metric LIV LIV-FT RoboCLIP VLC GVL ReWiND w/o OXE ReWiND w/ OXE

(a) Demo Reward Alignment r ↑ -0.03 0.55 0.01 0.64 0.52 0.67 0.83
ρ ↑ -0.04 0.55 -0.01 0.62 0.57 0.64 0.79

(b) Policy Rollout Ranking Rew. Order ρ ↑ -0.32 0.47 0.00 -0.18 0.32 0.76 0.82
Rew. Diff. ↑ -0.16 0.26 0.06 -0.15 0.17 0.39 0.41

(c) Input Robustness Avg. ρ ↑ 0.03 0.27 0.00 0.60 0.58 0.55 0.74
ρ Variance ↓ 0.08 0.28 0.00 0.00 0.01 0.03 0.04

tions (without prior knowledge of ReWiND’s performance),
resulting in four total instructions per task. For example, “close
the door” is an original instruction, and we add “shut the door.”
Each set of instructions is paired with a single demonstration
video, and we compare the reward models by measuring
their average Spearman’s rank correlation (ρ) and output
variance across these instructions in Table I(c). Higher vari-
ance indicates lower robustnes. Again, ReWiND outperforms
baselines, achieving the highest average correlation (0.74),
23% better than VLC, and near-zero variance, even without
OXE training—likely aided by our instruction augmentation
approach (Section II-A1). RoboCLIP and VLC show near-zero
variance but achieve significantly lower correlation scores.

So far, our results demonstrate that ReWiND significantly
outperforms all image-language-conditioned reward base-
lines in terms of generalization, rewarding policy rollouts,
and input robustness. We next demonstrate how these results
translate into sample-efficient policy learning.

B. Q2: Learning New Tasks with RL
Simulation. We use the Meta-World simulation bench-

mark [37], where we pre-train reward models and policies
on 20 tasks, each with 5 per-task demos collected from a
scripted policy. We evaluate on 8 unseen tasks in Meta-World,
chosen for reasonable initial policy rollout behaviors, across
3 seeds each. We compare ReWiND against the 2 language-
conditioned reward model baselines that performed best in
reward alignment (VLC) and policy rollout rankings (LIV-FT)
from the reward analysis in Section III-A. We also compare
against Sparse, which pre-trains and fine-tunes on only the
sparse success reward bonus, and Pre-train, which pre-trains
on sparse reward and is evaluated zero-shot on new tasks.
All baselines are image, proprioception (x, y, z, gripper), and
language conditioned. Each method uses the same policy
pre-training and RL procedure as ReWiND as outlined in
Section II-B, and is trained online for 100k timesteps. See
Appendix B for environment and policy training details.

As recommended by Agarwal, Schwarzer, Castro, et al.
[39], we report the interquartile mean (IQM) and 95% confi-
dence intervals computed over all task success rates at 100k
environment steps in Figure 5. Sparse reward fine-tuning and
Pre-train (no fine-tuning) result in near-zero success rates,
highlighting the difficulty of image-based new task learning
under limited data. In fact, Sparse reward fine-tuning, which
relies purely on a sparse success bonus, performs worse
than Pre-train after fine-tuning. Meanwhile, ReWiND achieves

0.00 0.25 0.50 0.75
Pre-train

Sparse
LIV-FT

VLC
ReWiND

IQM

Success Rate @ 100k

Fig. 5: Meta-World final performance. We plot inter-quartile
means (IQMs) of success rates after 100k environment steps
on 8 unseen tasks in Meta-World. ReWiND achieves 79%.

an IQM success rate of 79%, a 97.5% improvement over
the best baseline, VLC, demonstrating that ReWiND effec-
tively enables the policy to learn new tasks in Meta-World.
These results are well-aligned with our reward analysis in
Section III-A, demonstrating how they correlate with policy
learning performance. ReWiND is also more sample-efficient
at timesteps less than 100k; see extended discussion in Sec-
tion D-B and sample efficiency curves in Figure 13i.

These results are well-aligned with our reward analysis in
Section III-A, demonstrating how they correlate with policy
learning performance. ReWiND is also more sample-efficient
at timesteps less than 100k.

Real-World Robot Learning. We conduct real-world table-
top manipulation experiments with a bimanual Koch v1.1
robot arm setup [40]. We use 5 demos to train the reward
function, but 10 for the policy, as we found policy learning to
be a bottleneck on this difficult robot embodiment. Across five
tasks, we demonstrate in Figure 6 that an hour of real-world
RL with ReWiND improves the success rate over the base
pre-trained policy from an average 12% success rate to 68%, a
5× improvement. Meanwhile, VLC only improves from 8% to
10%—ReWiND outperforms VLC, the best simulation base-
line, by 6.7×. RL for an hour of real-world experiment time
corresponds to 50k environment steps with our parallelized
codebase that trains the policy while an older checkpoint
gathers data in the environment to avoid any training wait
time. We select diverse tasks that demonstrate real-world
improvement based on generalization metrics defined in prior
work [17], [18] on: an in-distribution task, separate the
blue and orange cups; an in-distribution difficult task,
fold the blue towel; an unseen task in terms of large
amounts of visual clutter, open the red trash bin;
an unseen task in terms of spatial relationships between

Task Variation

Fold the blue towel Open the red trash bin Put the orange cup on the red
plate

Separate the blue and orange
cups

Put the fruit-colored object in
the box

Su
cc

es
s %

 (1
0

Tr
ia

ls
)

0.0

0.3

0.5

0.8

1.0

In Distribution In Distribution (Hard) Visual Clutter Spatial Language

70%

100%

70%
50%50%

10%
20%

0%
10%

20%
0%0%0%0%

50%

0%0%0%0%

40%

VLC Pre-trained VLC Fine-tuned
ReWiND Pre-trained ReWiND Fine-tuned

Fig. 6: Real-robot RL. We present results on the Koch bimanual arms across in-distribution tasks and visual, spatial, and
linguistic generalization tasks. Online RL with ReWiND improves a pre-trained policy by an absolute 56% across all five tasks.

TABLE II: Ablation Study: subtracting (−) and adding + various ReWiND components on Metaworld training and evaluation
task (a) demo reward alignment, evaluation task (b) policy rollout ranking order and reward difference, and evaluation task (c)
input robustness.

Model (a) Demo Reward Alignment (b) Policy Rollout Ranking (c) Input Robustness

Train Demos ρ ↑ Unseen Demo ρ ↑ Rew. Order ρ ↑ Rew. Diff. ↑ Avg. ρ ↑ ρ Variance ↓

Original ReWiND 1.00 0.79 0.82 0.41 0.74 0.04

− Targ. Env Data 0.55 0.77 0.18 0.08 0.78 0.04
− Open-X Subset 1.00 0.64 0.76 0.39 0.55 0.03
− Video Rewind 1.00 0.69 0.56 0.27 0.66 0.02
− Instr. Generation 1.00 0.66 0.62 0.30 0.52 0.07
+ Full Pos. Embeds 0.99 0.85 0.71 0.33 0.78 0.06

objects requiring new action sequences, put the orange
cup on the red plate; and an unseen task in terms of
language input, put the fruit-colored object in
the box. Overall, ReWiND enables real-world reinforce-
ment learning on unseen tasks without requiring new demon-
strations, improving over the pretrained pre-trained policy, and
outperforms the best baseline from simulation, VLC.

IV. ABLATION STUDY AND ADDITIONAL ANALYSIS

A. Ablation Study

We perform a thorough ablation study of ReWiND regarding
how specific design choices influence demonstration reward
alignment, policy rollout ranking, and input robustness metrics
introduced in Section III-A. We ablate: instruction generation
and video rewinding (Section II-A1); using OXE data; the
need for target environment data Ddemos; and finally, the use
of first frame vs. full frame positional embeddings on the
input observation sequence o1:T in the cross-modal sequential
aggregator (Section II-A2). Overall, the original ReWiND
model performs best across most metrics. Below, we analyze
the impact of each ablation:

Datasets. Removing target environment data (−Targ. Env
Data)—i.e., using only Dopen-x data without Ddemos—leads
to poor alignment with training demonstrations (Table IIa)
and fails to distinguish between failed, near-successful, and
successful policy rollouts (Table IIb). However, it retains
strong input robustness due to the diversity of OXE data.

Meanwhile, removing the Open-X subset (−Open-X Subset)
harms unseen task reward alignment (Table IIa) and input
robustness (Table IIc), highlighting the importance of OXE
data for generalizing across varied language instructions.

Augmentation. Eliminating video rewinding (−Video
Rewind) degrades rollout ranking performance (Table IIb),
showing that rewinding helps distinguish failed rollouts as
intended. This variant performs similarly to the single-
image LIV-FT baseline in Table I, indicating that video
rewinding more effectively captures the temporal informa-
tion in the videos. Similarly, removing instruction generation
(−Instruction Generation) reduces performance on language
input robustness (Table IIc), confirming that LLM-generated
instructions enhance robustness to diverse inputs.

Architecture. Adding full positional embeddings (+Full
Pos. Embeds) improves unseen demo alignment (Table IIa)
but worsens rollout ranking (Table IIb), likely due to
overfitting—where the model learns to predict increasing
rewards regardless of input. To avoid overfitting, the main
ReWiND model uses only first-frame positional embeddings
(Section II-A2).

Concluding Statement. In conclusion, our experiments
demonstrated ReWiND’s effectiveness as a reward function
for policy learning through detailed reward analyses and
its effectiveness as a framework for sample-efficient robot
learning of unseen tasks, both in simulation and on a real
bimanual robot.

REFERENCES

[1] A. Brohan et al., “Rt-1: Robotics transformer for real-
world control at scale,” in Robotics: Science and Sys-
tems (RSS), 2023.

[2] A. Brohan et al., “Rt-2: Vision-language-action models
transfer web knowledge to robotic control,” in Confer-
ence on Robot Learning (CoRL), 2023.

[3] K. Black et al., “π0: A vision-language-action flow
model for general robot control,” arXiv preprint
arxiv:2410.24164, 2024. arXiv: 2410.24164 [cs.LG].

[4] Y. Li et al., “Hamster: Hierarchical action models
for open-world robot manipulation,” in International
Conference on Learning Representations (ICLR), 2025.

[5] R. S. Sutton et al., Reinforcement Learning: An In-
troduction. Cambridge, MA, USA: A Bradford Book,
2018, ISBN: 0262039249.

[6] S. A. Sontakke et al., “Roboclip: One demonstration is
enough to learn robot policies,” in NeurIPS, 2023.

[7] M. Kwon et al., “Reward design with language models,”
in International Conference on Learning Representa-
tions (ICLR), 2023.

[8] H. Hu et al., “Language instructed reinforcement learn-
ing for human-ai coordination,” in International Con-
ference on Machine Learning (ICML), 2023.

[9] W. Yu et al., “Language to rewards for robotic skill
synthesis,” in Conference on Robot Learning (CoRL),
2023.

[10] Y. J. Ma et al., “Eureka: Human-level reward design
via coding large language models,” in International
Conference on Learning Representations (ICLR), 2024.

[11] Y. J. Ma et al., “Dreureka: Language model guided
sim-to-real transfer,” in Robotics: Science and Systems
(RSS), 2024.

[12] W. Liang et al., “Environment curriculum generation
via large language models,” in Conference on Robot
Learning (CoRL), 2024.

[13] M. Alakuijala et al., “Video-language critic: Trans-
ferable reward functions for language-conditioned
robotics,” in Transactions on Machine Learning Re-
search (TMLR), 2025.

[14] Y. Wang et al., “Rl-vlm-f: Reinforcement learning from
vision language foundation model feedback,” in In-
ternational Conference on Machine Learning (ICML),
2024.

[15] Z. Yang et al., “Trajectory improvement and reward
learning from comparative language feedback,” in Con-
ference on Robot Learning (CoRL), 2024.

[16] O. X.-E. Collaboration et al., “Open X-Embodiment:
Robotic learning datasets and RT-X models,” in Interna-
tional Conference on Robotics and Automation (ICRA),
2024.

[17] A. Anwar et al., “Contrast sets for evaluating language-
guided robot policies,” in Conference on Robot Learn-
ing (CoRL), 2024.

[18] J. Gao et al., “A taxonomy for evaluating generalist
robot policies,” arXiv preprint arXiv:2503.01238, 2025.

[19] D. Yang et al., “Rank2reward: Learning shaped reward
functions from passive video,” in International Confer-
ence on Robotics and Automation (ICRA), 2024.

[20] M. Oquab et al., Dinov2: Learning robust visual fea-
tures without supervision, 2024. arXiv: 2304 . 07193
[cs.CV].

[21] N. Reimers et al., “Sentence-bert: Sentence embeddings
using siamese bert-networks,” in Empirical Methods in
Natural Language Processing (EMNLP), 2019.

[22] Y. J. Ma et al., “Vision language models are in-context
value learners,” in International Conference on Learn-
ing Representations (ICLR), 2025.

[23] I. Kostrikov et al., “Offline reinforcement learning with
implicit q-learning,” in International Conference on
Learning Representations (ICLR), 2022.

[24] S. Venkataraman et al., “Real-world offline reinforce-
ment learning from vision language model feedback,”
in arXiv preprint arXiv:2411.05273, 2024.

[25] J. Zhang et al., “Bootstrap your own skills: Learning to
solve new tasks with large language model guidance,”
in Conference on Robot Learning (CoRL), 2023.

[26] J. Zhang et al., “Sprint: Scalable policy pre-training
via language instruction relabeling,” in International
Conference on Robotics and Automation (ICRA), 2024.

[27] J. Luo et al., “Precise and dexterous robotic manipula-
tion via human-in-the-loop reinforcement learning,” in
arXiv preprint arXiv:2410.21845, 2024. arXiv: 2410 .
21845 [cs.RO].

[28] J. Fu et al., “Variational inverse control with events: A
general framework for data-driven reward definition,” in
NeurIPS, S. Bengio et al., Eds., 2018.

[29] W. Ye et al., “Reinforcement learning with foundation
priors: Let embodied agent efficiently learn on its own,”
in Conference on Robot Learning (CoRL), 2024.

[30] J. Yang et al., “Robot fine-tuning made easy: Pre-
training rewards and policies for autonomous real-world
reinforcement learning,” in International Conference on
Robotics and Automation (ICRA), 2024.

[31] A. Gupta et al., “Reset-free reinforcement learning via
multi-task learning: Learning dexterous manipulation
behaviors without human intervention,” in International
Conference on Robotics and Automation (ICRA), 2021.

[32] Y. J. Ma et al., “Liv: Language-image representations
and rewards for robotic control,” in International Con-
ference on Machine Learning (ICML), 2023.

[33] D. Damen et al., “Rescaling egocentric vision: Col-
lection, pipeline and challenges for epic-kitchens-
100,” International Journal of Computer Vision (IJCV),
vol. 130, pp. 33–55, 2022.

[34] S. Xie et al., “Rethinking spatiotemporal feature learn-
ing: Speed-accuracy trade-offs in video classification,”
in European Conference on Computer Vision (ECCV),
2018.

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2304.07193
https://arxiv.org/abs/2410.21845
https://arxiv.org/abs/2410.21845

[35] A. Miech et al., “Howto100m: Learning a text-video
embedding by watching hundred million narrated video
clips,” in International Conference on Computer Vision
(ICCV), 2019.

[36] G. Team, “Gemini: A family of highly capable multi-
modal models,” arXiv preprint arXiv:2312.11805, 2024.
arXiv: 2312.11805 [cs.CL].

[37] T. Yu et al., “Meta-world: A benchmark and evaluation
for multi-task and meta reinforcement learning,” in
Conference on Robot Learning (CoRL), 2019.

[38] T. Haarnoja et al., “Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a
stochastic actor,” in International Conference on Ma-
chine Learning (ICML), 2018.

[39] R. Agarwal et al., “Deep reinforcement learning at the
edge of the statistical precipice,” in NeurIPS, 2021.

[40] R. Cadene et al., Lerobot: State-of-the-art machine
learning for real-world robotics in pytorch, https : / /
github.com/huggingface/lerobot, 2024.

[41] H. R. Walke et al., “Bridgedata v2: A dataset for robot
learning at scale,” in Conference on Robot Learning
(CoRL), 2023.

[42] E. Jang et al., “BC-z: Zero-shot task generalization
with robotic imitation learning,” in Conference on Robot
Learning (CoRL), 2021.

[43] S. Dass et al., Clvr jaco play dataset, version 1.0.0,
2023. [Online]. Available: https : / / github. com/clvrai /
clvr jaco play dataset.

[44] L. Y. Chen et al., Berkeley UR5 demonstration dataset,
https://sites.google.com/view/berkeley-ur5/home, 2023.

[45] X. Zhu et al., Fanuc manipulation: A dataset for
learning-based manipulation with fanuc mate 200id
robot, https : / / sites . google . com / berkeley. edu / fanuc -
manipulation, 2023.

[46] S. Bahl et al., “Affordances from human videos as
a versatile representation for robotics,” in Conference
on Computer Vision and Pattern Recognition (CVPR),
2023.

[47] R. Mendonca et al., “Structured world models from
human videos,” Conference on Robot Learning (CoRL),
2023.

[48] S. Belkhale et al., “Hydra: Hybrid robot actions for
imitation learning,” in Conference on Robot Learning
(CoRL), 2023.

[49] G. Yan et al., Ucsd kitchens dataset, Aug. 2023.
[50] Y. Zhu et al., “Bottom-up skill discovery from unseg-

mented demonstrations for long-horizon robot manipu-
lation,” IEEE Robotics and Automation Letters (RA-L),
2022.

[51] H. Liu et al., “Robot learning on the job: Human-in-
the-loop autonomy and learning during deployment,” in
Robotics: Science and Systems (RSS), 2023.

[52] J. Wu et al., V-former: Offline RL with temporally-
extended actions, 2024.

[53] X. B. Peng et al., “Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning,”
in arXiv preprint arXiv:1910.00177, 2019.

[54] Z. Zhou et al., “Efficient online reinforcement learning
fine-tuning need not retain offline data,” in International
Conference on Learning Representations (ICLR), 2025.

[55] P. J. Ball et al., “Efficient online reinforcement learn-
ing with offline data,” in International Conference on
Machine Learning (ICML), 2023.

[56] I. Uchendu et al., “Jump-start reinforcement learn-
ing,” in International Conference on Machine Learning
(ICML), 2023.

[57] A. Q. Jiang et al., “Mistral 7b,” arXiv preprint
arXiv:2401.04088, 2023. arXiv: 2310.06825 [cs.CL].

[58] T. Z. Zhao et al., “Learning fine-grained bimanual
manipulation with low-cost hardware,” arXiv preprint
arXiv:2304.13705, 2023.

[59] K. Pertsch et al., “Accelerating reinforcement learning
with learned skill priors,” in Conference on Robot
Learning (CoRL), 2020.

https://arxiv.org/abs/2312.11805
https://github.com/huggingface/lerobot
https://github.com/huggingface/lerobot
https://github.com/clvrai/clvr_jaco_play_dataset
https://github.com/clvrai/clvr_jaco_play_dataset
https://sites.google.com/berkeley.edu/fanuc-manipulation
https://sites.google.com/berkeley.edu/fanuc-manipulation
https://arxiv.org/abs/2310.06825

Unsuccessful Policy Rollout: Push the Button

LIV LIV-FT

1

-1

0

Time

RoboCLIP VLC GVL ReWiND

Corresponding Reward Plots

Fig. 7: Unsuccessful policy rollout for the “Push the Button”
task in Meta-World and its corresponding rewards below it.
ReWiND predicts calibrated rewards that reflect better partial
progress when the policy gets stuck near the button.

APPENDIX A
IMPLEMENTATION DETAILS

This section introduces implementation details for ReWiND
in terms of the datasets, reward model, policy training, and
online RL.

A. ReWiND Implementation

Full pseudocode for ReWiND is listed in Algorithm 1.
Individual implementation details follow.

1) Open-X Dataset: Below we list details of the OXE
subset, Dopen-x, used for training the reward model Rψ(o1:t, z)
(mentioned in Section II-A).

We select a subset of datasets from the Open-X Dataset [16].
The subset includes Bridge-V2 [41], BC-Z [42], Fractal [1],
CLVR Jaco Play [43], Berkeley Autolab UR5 [44], Berkeley
Fanuc Manipulation [45], CMU Stretch [46], [47], Stanford
Hydra [48], UCSD Kitchen [49], Austin BUDS [50], and
Austin Sirius [51]. These datasets were selected for their
high-quality, task-oriented manipulation trajectories (i.e., no
play data or extremely high-level annotations). These datasets
provide around 350k trajectories and 58k total unique task
annotations. To ensure meaningful trajectories for training the
ReWiND reward model, we postprocess the data to remove
trajectories with less than 5 timesteps. We subsample the
videos in the datasets to 16 frames for reward model training,
as we did not see a noticeable benefit from training it with
longer videos.

2) Reward Function: We picture the overall architecture of
the reward function in Figure 8. We encode input images with
the pre-trained DINO-V2 base model (86M params) with 768
embedding size. Similarly, we encode language with the pre-
trained ALL-MINILM-L12-V2 model with a 384 embedding
size. We project image and language embeddings to 512
dimensions with a single linear layer. We treat the language
embedding as a single input token and we evenly downsample
DINO-v2 image embeddings for every observation sequence
to 16 frames.

The cross-modal sequential aggregator takes these tokens as
input and produces a per-image embedding used by an MLP

Algorithm 1 ReWiND Algorithm, Section I.

Require: Demo dataset Ddemos, Pre-trained LLM, Open-X
subset Dopen-x, Reward Model Rψ(o1:t, z), Policy π.
Ddemos includes video trajectories o1:t and language em-
bedding z.

1: /* Train the Reward Model Section II-A */
2: REWARDMODELTRAINING(Rψ(o1:t, z), Ddemos, Dopen-x)
3: /* Policy Pretraining Section II-B */
4: OFFLINEPOLICYPRETRAINING(Rψ(o1:t, z), Ddemos, π)
5: /* Learn New Task Online Section II-B */
6: ONLINERL(znew, Rψ(o1:t, z), π)
7:
8: procedure REWARDMODELTRAINING(Rψ(o1:t, z),
Ddemos, Dopen-x)

9: Augment instruction labels with LLM
10: Sample a video clip and annotation ot1:t2 , z from
Ddemos or Dopen-x.

11: Choose to keep the original video or perform REWIN-
DAUGMENTATION.

12: if perform REWINDAUGMENTATION then
13: orewound ← REWINDAUGMENTATION(ot1:t2)
14: Optimize Rψ(o1:t, z) with Lrewind(o

rewound, z) ▷
Equation (2)

15: else
16: Sample a different video clip oother

t′1:t
′
2

17: Optimize Rψ(o1:t, z) with Lprogress(ot1:t2 , z, o
other
t′1,t

′
2
)

▷ Equation (1)
18: end if
19: end procedure
20:
21: procedure OFFLINEPOLICYPRETRAINING(Rψ(o1:t, z),
Ddemos, π)

22: Relabel Ddemos with r̂off coming from Rψ(o1:t, z). ▷
Equation (4)

23: Train π with offline RL on relabeled Ddemos.
24: end procedure
25:
26: procedure ONLINERL(Rψ(o1:t, z), π)
27: For every rollout label the trajectories with r̂on from

Rψ(o1:t, z). ▷ Equation (5)
28: Optimize π with online RL Algorithm
29: end procedure
30:
31: procedure REWINDAUGMENTATION(ot1:t2) ▷

Section II-A1
32: Sample random split point i between t1 and t2.
33: Sample # frames to rewind for, k
34: Reverse oi−k:i and concat with ot1:i
35: Return [ot1:i−1, oi:i−k]
36: end procedure

Multi-Head
Attention

Multi-Head
Attention

Reward Model Structure

Cross-Modal Sequential Aggregator

“Separate the blue
and red cups.”

Video Sequence

Language Instruction

DinoV2MiniLM

Linear Projector Linear Projector

+
Pos. Embed

MLP Predictor

̂r1, . . . , ̂rT

Feed
Forward

4x Multi-Head
Attention x8

Fig. 8: ReWiND’s Reward Model Architecture. It’s composed of frozen language and image input embeddings projected
to a shared hidden dimension of 512. These embeddings are treated as input tokens to the cross-modal sequential aggregator
transformer composed of 4 causally masked transformer layers composed of 8 multi-head attention blocks each. Per-timestep
embeddings for each input observation are fed into an MLP to predict rewards for each timestep.

to produce per-timestep rewards. The cross-modal sequen-
tial aggregator is a causally masked transformer (PyTorch
nn.TransformerEncoder) composed of 4 layers, each
with 8 heads with a combined hidden dimension of 2048.
We add a learnable positional embedding to only the first
frame of the video sequence embedding. In the ReWind reward
function training phase, we trained 2k steps for Meta-World
and 10k steps for Real-World robot experiments, with a batch
size of 1024. Each batch includes 80% data from Dopen-x
and 20% target environment data from Ddemos. Each video
in the batch has an 80% probability of having video rewind
augmentation, and independently, a 20% percent probability of
having a mismatched video-language pairing with 0 progress
target (see Section II-A). In order to better policy execution
videos that look close to success, 10% of the rewound videos
will only have their last 3 frames rewound. No extensive tuning
was performed on these per-sample rewind and mismatch
probabilities; they were heuristically chosen during initial
small-scale experimentation and then fixed for all experiments.

3) Policy Training: Specific architectural and training de-
tails are discussed per-environment in the corresponding sec-
tions Section B-B and Section C-B. Below we talk about high
level algorithmic details for policy training along with shared
implementation details across environments.

a) Policy Input.: Similar to the reward model, we con-
dition the policy on frozen pre-trained image and language
embeddings: DINO-v2-base image embeddings (86M params,
768 embedding size) [20] along with ALL-MINILM-L12-V2
language embeddings of size 384 from the Sentence Trans-
formers python package [21]. We also include proprioceptive
information in both of our envrionments.

b) Offline RL.: We use Implicit Q Learning (IQL) [23]
as prior work found it performant and easy to tune for
robot manipulation with action-chunked policies [25], [26],
[52]. IQL trains on in-distribution (s, a, s′, r, a′) tuples from
the dataset, avoiding using next actions a′ sampled from a

policy, to ensure the critic functions accurately reflect returns
restricted to dataset actions. The value function is optimized
with expectile regression, controlled by a hyperparameter τ :
τ = 0.5 recovers mean squared error, while τ → 1 yields a
more optimistic estimate, helping the value function “stitch”
together distant rewards in sparse settings. The policy is
trained via advantage-weighted regression [53], maximizing

eβ(Q(s,a)−V (s)) log π(a|s),

where β is a temperature hyperparameter controlling how
“spiky” the policy loss is. To prevent numerical instability,
the exponential term is capped at a maximum value in practice
(for us, this is 100).

c) Online RL.: We use a custom soft-actor critic
(SAC) [38] implementation initialized with the pre-trained
policy from offline RL along with the Q and target Q functions.
We follow best practices from recent offline-online RL fine-
tuning work [54], [55], namely:

• 5-10 critics instead of 2, with random sampling of critics
• LayerNorm in the critic and possibly LayerNorm in the

policy
• A higher update-to-data ratio in the critics
• “Warm-starting” online RL by running with the frozen

pre-trained policy for the first few thousand environment
steps [54], [56]

• Possibly sampling offline pre-training data at a 50% ratio
during online RL

• Removing the SAC entropy term from the target critic
We found that by default, efficient offline-online learning

algorithms did not work very well “out of the box” for learning
new tasks on our real robot. This is perhaps because they
focus specifically on offline-online fine-tuning on the same
task while we are trying to learn new tasks, or perhaps due
to additional challenges of real-robot RL. Therefore, we make
some per-environment design decisions for online RL detailed
in the respective environment training sections.

APPENDIX B
METAWORLD EXPERIMENTS

A. Simulation Setup

a) Training/Eval Task Selection.: We manually select
20 training tasks from MT50 benchmark in the Metaworld
environment. These tasks are used for both reward model
training and policy pre-training. The training tasks include:
Button-Press, Button-Press-Topdown-Wall,
Coffee-Pull, Dial-Turn, Door-Open,
Door-Unlock, Drawer-Close, Faucet-Open,
Handle-Press, Handle-Pull-Side,
Peg-Insert-Side, Pick-Place, Plate-Slide,
Plate-Slide-Back-Side, Push, Reach,
Stick-Push, Stick-Pull, Window-Open,
Hand-Insert.

We also choose another 17 tasks from the MT50
benchmark for reward model evaluation and 8 of
tasks are selected for downstream policy finetuning.3

The evaluation tasks include Window-Close,
Sweep-Into, Soccer, Reach-Wall, Push-Back,
Plate-Slide-Side, Plate-Slide-Back,
Pick-Place-Wall, Handle-Pull,
Handle-Press-Side, Faucet-Close,
Door-Lock, Door-Close, Coffee-Push,
Coffee-Button, Button-Press-Wall,
Button-Press-Topdown. These tasks are visually
similar to the training tasks, but the tasks are different.
The 8 tasks used for downstream policy training are
Window-Close, Reach-Wall, Handle-Pull,
Coffee-Button, Button-Press-Wall,
Door-Lock, Handle-Press-Side, Sweep-into.

Fig. 9: Example camera viewpoint in Metaworld.

b) Environment Details.: We use Metaworld [37] with
the default 3rd-person camera viewpoint, pictured in Figure 9,
and also 4-dimension proprioception input (x, y, z, gripper).

3These 17 tasks were chosen for sharing at least some characteristic with
a training task.

Side Camera

Top Camera

Fig. 10: Real World Bimanual Robot Setup. Our real-world
setup consists of a top-down and side camera mounted to a
table where two Koch v1.1 low-cost arms are mounted. This
setup allows us to perform bimanual tasks and easily collect
data with another pair of low-cost “leader” arms mounted to
the same table.

The policy action space is the default one from Meta-
world represented as a 4-dimensional relative action space
for (∆x,∆y,∆z, gripper). Unlike the Metaworld environment
setups in prior reward learning papers, we do not include
goal/ground truth state information. We also terminate the
environment on success. Both of these choices were made to
mimic a real-world robot learning setup. The time horizon of
each episode is limited to 128 steps. The success bonus for
online and offline RL used in Equation (4) and Equation (5)
is 200 for ReWiND and all baselines.

B. Training Details

For Ddemos, we select 20 tasks from the MT-50 bench-
mark. Each task consists of one human-labeled annotation,
four augmented annotations (Section II-A1), and five optimal
demonstrations produced by the MetaWorld built-in planner.
We render images at the default resolution of 640x480, center-
crop to 224x224 and embed the image with DINOv2 encoder.

We pre-train the policy with IQL [23] for 100K steps
with learning rate 0.001, gamma 0.99. We use a three layer
MLP of size [768, 512, 256] for both the policy and value
function network. The general training procedure is described
in (Section A-A3)

For the various hyperparameters for online policy learning
we used in MetaWorld as described in Section A-A3. We use
10 critics and sample 2 of them during training, LayerNorm
in both the critic and policy, and an update-to-data ratio of 4
for the critics. We are not sampling from offline pre-training
data during online training nor are we training the target critic
with the entropy term, so the implementation is identical to
Warm-Start RL [54]. We warm-start online RL for 4000 steps.

APPENDIX C
REAL ROBOT EXPERIMENTS

A. Robot Experiment Setup

We use the Koch1.1 bimanual arm setup for data collection
and learning [40].4 Altogether, four total arms (2 for data col-
lection) cost ∼$1000, letting us demonstrate ReWiND enables
real-world online RL of new tasks even with very low-cost

4https://github.com/jess-moss/koch-v1-1

https://github.com/jess-moss/koch-v1-1

hardware and noisy control. The observations consist of RGB
images from a Logitech C930e top camera and side camera
(pictured in Figure 10). We control the robot with absolute
joint position control at a frequency of 30Hz. We collect a
small dataset of 10 demonstrations over 20 tasks, and then use
5 demos per-task for the reward function. We found the offline-
trained policy to be the primary bottleneck to optimizing
rewards in unseen tasks, so we used 10 demos per-task for
offline policy training. We have an episode timeout of 250
steps and provide a success bonus of 125 upon success (from
Equation (4) and Equation (5)). Proprioceptive information in
this environment includes 12 robot joint states, 6 for each arm.
These represent the rotation of each joint and gripper..

B. Real Robot Training Details

We use a small, instruction-tuned, open-source LLM,
Mistral-7B-Instruct-v0.3 [57], to generate 9 addi-
tional instructions for each task for instruction augmentation.

For the small dataset in real robot experiments, we manually
choose 15 tasks in the Koch tabletop setting, and each task
includes 5 trajectories and 10 annotations. The evaluation set
is 5 other random tasks, which are irrelevant with the tasks in
the small dataset. We use this evaluation set for offline metrics
and validating various design choices.

Unlike the MetaWorld experiments that use an MLP-based
policy, we use an action-chunked policy with temporal en-
sembling for the real robot. We found chunking to lead to
more stable bimanual manipulation on the Koch arms. We
implement the action chunking with a Transformer policy
that predicts 60 actions at each timesteps corresponding to
2 seconds of actions. We also implement a Transformer-
based critic. During rollouts, we then use temporal ensem-
bling [58]. Here, the current action is ensembles with the
last 60 timesteps’ predictions according to an exponential
weighting scheme wi = exp(−m∗i), where we use m = 0.01
or m = 0.1 depending on the task. We found m = 0.1 to work
well for tasks requiring grasping solid objects as it weights
recent actions more heavily, necessary for ensuring the policy
actually commits to the grasp, and m = 0.01 to work well for
non-grasping tasks as it results in a smoother policy.

The policy is a Transformer decoder with 1 layer and 8
heads with 1.5M params. The critic is a Transformer encoder
with 8 heads and 1 layer. We train each policy for 20k steps
offline on our offline dataset using IQL with AWR for policy
extraction. We train using a batch size of 256, use 5 critics, and
subsample 2 critics at each training step. We use LayerNorm
only in the critics as we found that LayerNorm in the action-
chunked policy could potentially hurt RL performance. We
also warm-start online RL for 3000 steps. We do not sample
actions during policy rollouts as we found action sampling to
conflict with temporal ensembling.

Then, we train the policy online as described in Section II-B.
We train online for 50k environment steps, which takes
approximately 1 hour as there is minimal waiting time for
policy training due to a threaded implementation that trains the
policy while the last iteration’s policy checkpoint is used for

rollouts. This parallelization nearly doubles the rate at which
we are able to collect policy rollouts. Specifically, during
online training, we collect a single rollout corresponding
to 250 environment steps while simultaneously training the
policy for 75 gradient steps. We keep a relatively low policy
to environment update ratio in order to ensure that we do
not have to wait for offline training to finish in order to start
the next online rollout. At each gradient step, we sample our
buffer such that 50% is the offline training data, 25% is online
failure trajectories, and 25% is online successful trajectories.
This sampling approach helps upsample successful online
trajectories. For every actor gradient step, we do 5 critic update
steps to more quickly train the critic online.

During real-world policy rollouts, it is important for the
robot to take safe actions that will not crash into other objects
or the table. However, we found that when regularizing the
policy’s KL divergence against a max-entropy prior as is
the case in the entropy maximization objective in standard
SAC [38], the growing entropy term would cause the policy
to produce largely random actions. Therefore, we regularize
against the pretrained policy’s distribution to encourage rea-
sonable behaviors throughout the process of learning, similar
to the SAC update rules from Pertsch, Lee, and Lim [59]. Thus
the π and Q updates follow:

π ← max
π

Eπ
[
Q(o, z)− αKL(π(·|o, z) || πpretrained(·|o, z)︸ ︷︷ ︸

pre-trained policy guidance

]
(6)

Q← min
Q

Q(o, z) = r + γ
[
Q(s′, z′, d′) (7)

− αKL (π(·|o, z) || πpretrained(·|o, z))︸ ︷︷ ︸
pre-trained policy guidance

]
We set α in both equations to a fixed value of 10.0 on tasks
where grasping solid objects is not required. For others, we
set it to 20.0 to ensure the policy doesn’t degenerate from
its grasping action early in training. We found that lower KL
penalties could result in the policy falling into locally optimal
but globally suboptimal behaviors, such as moving a cup with
the arm instead of actually picking it up.

C. Real Robot Tasks

We collected 10 demos per-task over 20 tasks on the Koch
arms. We train the reward function on 5 demos per-task and
the policy on 10 demos per-task. We list these training tasks
below.
Move the orange cup from the left to the

right, Move the orange cup from the right
to the left, Put the orange cup on the red
plate, Put the red cup on the red plate,
Separate the blue and red cups, Fold the
blue towel, Open the green trash bin, Open
the blue trash bin, Throw the banana away
in the green trash bin, Throw the banana
away in the blue trash bin, Put the red
marker in the red trash can, Put the pink

marker in the green trash can, Put the blue
tape in the box on the left, Put the banana
in the box, Put the orange cup in the box,
Put the blue cup on the red plate, Separate
the orange and blue cups, Open the red
trash bin, Throw the banana away in the red
trash bin, Put the red tape in the box on
the right.

In addition, we present rollouts of the five online tasks in
Figure 11. We also provide additional descriptions of these
tasks below:

• Separate the blue and orange cups: the
robot must separate the two cups in the middle

• Fold the blue towel: the robot must fold the
towel in half.

• Open the red trash bin: the robot is surrounded
by clutter compared to the training data above and must
open the trash bin

• Put the orange cup in the red plate: the
robot picks an orange cup and must place it on a plate
that is further away from the training data distribution

• Put fruit-colored object in the box: we
refer to a “fruit-colored” object to test the robot’s ability
to handle semantic generalization.

APPENDIX D
ADDITIONAL RESULTS

A. Additional Metaworld Reward Analysis

In Figure 12 we plot the confusion matrices of different
reward models on training tasks in addition to the evaluation
task plots of Metaworld in Figure 4. LIV, RoboCLIP and GVL
are not pretrained or fine-tuned on the etraining tasks while
VLC, LIV-FT and ReWiND are. We can see both ReWiND
w/ OXE data Dopen-x and ReWiND w/o OXE data Dopen-x are
the best, having the clearest disparity between the diagonal
and off-diagonal elements. LIV-FT also works well with a
diagonal-heavy matrix. However, its disparity is not as clear
as ReWiND.

B. MetaWorld Sample Efficiency Results

In this section, we analyze the sample efficiency of ReWiND
against baselines in Metaworld. Figure 13 plots the learning
curves for all downstream policy training tasks. Each panel
corresponds to one specific task. And Figure 13i displays the
average of all 8 downstream tasks we used for policy fine-
tuning. We can see from the average IQM plot that ReWiND
achieves higher success rate than other baselines with the same
number of timesteps and ReWiND is generally more sample-
efficient at any timestep.

C. Real-World Reward Analysis

We evaluated the performance of ReWiND in Metaworld
in Section III-A. In this section, we analyze how ReWiND
works with real-world data. For the real-world setup, we use
both views of each trajectory, treated as separate videos (but
from the same demonstration) to train and evaluate all models.

TABLE III: Evaluation Metrics on Real-world Unseen
Tasks: Comparsion between reward models in real-world
unseen tasks with rank correlation ρ and r.

Model LIV LIV-FT RoboCLIP VLC GVL ReWiND

ρ ↑ 0.22 -0.18 0.04 0.20 0.57 0.91
r ↑ 0.23 -0.13 0.04 0.19 0.52 0.91

It can be seen from Table III that ReWiND has the highest
Spearman’s rank correlation (ρ) and Pearson’s rank correlation
(r) among all reward models. Also, in Figure 14 and Figure 15,
ReWiND has the best alignment between true-paired video and
language instruction in both training tasks and unseen tasks,
displaying strong generalization in new tasks. Note that LIV,
GVL, and RoboCLIP are not trained on these training tasks
as they are zero-shot models.

APPENDIX E
ABLATION STUDY AND ADDITIONAL ANALYSIS

A. Ablation Study

We perform a thorough ablation study of ReWiND regarding
how specific design choices influence demonstration reward
alignment, policy rollout ranking, and input robustness metrics
introduced in Section III-A. We ablate: instruction generation
and video rewinding (Section II-A1); using OXE data; the
need for target environment data Ddemos; and finally, the use
of first frame vs. full frame positional embeddings on the
input observation sequence o1:T in the cross-modal sequential
aggregator (Section II-A2). Overall, the original ReWiND
model performs best across most metrics. Below, we analyze
the impact of each ablation:

Datasets. Removing target environment data (−Targ. Env
Data)—i.e., using only Dopen-x data without Ddemos—leads
to poor alignment with training demonstrations (Table IIa)
and fails to distinguish between failed, near-successful, and
successful policy rollouts (Table IIb). However, it retains
strong input robustness due to the diversity of OXE data.
Meanwhile, removing the Open-X subset (−Open-X Subset)
harms unseen task reward alignment (Table IIa) and input
robustness (Table IIc), highlighting the importance of OXE
data for generalizing across varied language instructions.

Augmentation. Eliminating video rewinding (−Video
Rewind) degrades rollout ranking performance (Table IIb),
showing that rewinding helps distinguish failed rollouts as
intended. This variant performs similarly to the single-
image LIV-FT baseline in Table I, indicating that video
rewinding more effectively captures the temporal informa-
tion in the videos. Similarly, removing instruction generation
(−Instruction Generation) reduces performance on language
input robustness (Table IIc), confirming that LLM-generated
instructions enhance robustness to diverse inputs.

Architecture. Adding full positional embeddings (+Full
Pos. Embeds) improves unseen demo alignment (Table IIa)
but worsens rollout ranking (Table IIb), likely due to
overfitting—where the model learns to predict increasing

separate the blue and orange
cups

fold the blue towel

open the red trash bin

put the orange cup in the red
plate

put fruit-colored object in
the box

Fig. 11: We present rollouts for the 5 tasks we use for online RL. The first two tasks are in-distribution to the policy, while
the latter 3 tasks are out-of-distribution with respect to visual, spatial, or semantic generalization.

RoboCLIPLIV LIV-FT GVLVLC ReWiNDReWiND w/o OXE

In
cr

ea
si

ng

Re
w

ar
d

Tr
ai

ni
ng

 T
as

k
Tr

aj
ec

to
ry

 V
id

eo
s

Training Task Language Instructions

Fig. 12: Metaworld Reward Confusion Matrix on 20 Training Tasks. For each training task, we compute rewards for
all combinations of demonstration videos and language descriptions. ReWiND produces the most diagonal-heavy confusion
matrix, indicating strong alignment between unseen demos and instructions.

rewards regardless of input. To avoid overfitting, the main
ReWiND model uses only first-frame positional embeddings
(Section II-A2).

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate: button-press-wall-v2

ReWiND
VLC
LIV-FT
Sparse
Pre-train

(a) Button Press (Wall)

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate: coffee-button-v2

ReWiND
VLC
LIV-FT
Sparse
Pre-train

(b) Coffee Button

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate: faucet-close-v2
ReWiND
VLC
LIV-FT
Sparse
Pre-train

(c) Faucet Close

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate: reach-wall-v2
ReWiND
VLC
LIV-FT
Sparse
Pre-train

(d) Reach (Wall)

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate: window-close-v2
ReWiND
VLC
LIV-FT
Sparse
Pre-train

(e) Window Close

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

Su
cc

es
s

Ra
te

Success Rate: door-lock-v2
ReWiND
VLC
LIV-FT
Sparse
Pre-train

(f) Door Lock

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.1

0.2

0.3

Su
cc

es
s

Ra
te

Success Rate: sweep-into-v2
ReWiND
VLC
LIV-FT
Sparse
Pre-train

(g) Sweep Into

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

Ra
te

Success Rate: handle-press-side-v2
ReWiND
VLC
LIV-FT
Sparse
Pre-train

(h) Handle Press (Side)

0 20000 40000 60000 80000 100000
Number of Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
uc

ce
ss

 R
at

e

ReWiND
VLC
LIV-FT
Sparse
Pre-train

(i) All Tasks IQM and 95% CI

Fig. 13: Metaworld success curves. Task-level success rate learning curves plotting mean and shaded standard deviations.
The bottom right figure plots the overall average across all tasks in terms of IQM and 95% confidence intervals.

LIV

In
cr

ea
si

ng

Re
w

ar
d

U
ns

ee
n

Ta
sk

Tr

aj
ec

to
ry

 V
id

eo
s

Unseen Task Language Instructions

GVLVLCLIV-FT RoboCLIP ReWiND

Fig. 14: Real-world Koch Reward Confusion Matrix on
5 Unseen Tasks. For each unseen task, we compute rewards
for all combinations of demonstration videos and language
descriptions. ReWiND produces the most diagonal-heavy con-
fusion matrix, indicating strong alignment between unseen
demos and instructions.

RoboCLIPLIV LIV-FT GVLVLC ReWiND

In
cr

ea
si

ng

Re
w

ar
d

Tr
ai

ni
ng

 T
as

k
Tr

aj
ec

to
ry

 V
id

eo
s

Training Task Language Instructions

Fig. 15: Real-world Koch Reward Confusion Matrix on 15
Training Tasks. For each training task, we compute rewards
for all combinations of demonstration videos and language
descriptions. LIV-FT, VLC and ReWiND are pretrained or
fine-tuned with these training task while LIV , GVL and
RoboCLIP are not

	Introduction
	ReWiND: Learning Rewards Without New Demonstrations
	Learning a Reward Function
	Video and Language Augmentation (D2, D3)
	Architecture (D1)

	Policy Learning

	Experiments
	Q1: What Makes a Good Reward Function?
	Q2: Learning New Tasks with RL

	Ablation Study and Additional Analysis
	Ablation Study

	Appendix A: Implementation Details
	ReWiND Implementation
	Open-X Dataset
	Reward Function
	Policy Training

	Appendix B: MetaWorld Experiments
	Simulation Setup
	Training Details

	Appendix C: Real Robot Experiments
	Robot Experiment Setup
	Real Robot Training Details
	Real Robot Tasks

	Appendix D: Additional Results
	Additional Metaworld Reward Analysis
	MetaWorld Sample Efficiency Results
	Real-World Reward Analysis

	Appendix E: Ablation Study and Additional Analysis
	Ablation Study

