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Abstract—While large-scale robot datasets have propelled
recent progress in imitation learning, learning from smaller
task specific datasets remains critical for deployment in new
environments and unseen tasks. One such approach to few-
shot imitation learning is retrieval-based imitation learning,
which extracts relevant samples from large, widely available
prior datasets to augment a limited demonstration dataset.
To determine the relevant data from prior datasets, retrieval-
based approaches most commonly calculate a prior data point’s
minimum distance to a point in the target dataset in latent
space. While retrieval-based methods have shown success using
this metric for data selection, we demonstrate its equivalence
to the limit of a Gaussian kernel density (KDE) estimate of
the target data distribution. This reveals two shortcomings of
the retrieval rule used in prior work. First, it relies on high-
variance nearest neighbor estimates that are susceptible to noise.
Second, it does not account for the distribution of prior data when
retrieving data. To address these issues, we introduce Importance
Weighted Retrieval (IWR), which estimates importance weights,
or the ratio between the target and prior data distributions for
retrieval, using Gaussian KDEs. By considering the probability
ratio, IWR overcomes the bias of previous selection rules, and by
using reasonable modeling parameters, IWR effectively smooths
estimates using all data points. Across both simulation environ-
ments and real-world evaluations on the Bridge dataset we find
that our method, IWR, consistently improves performance of
existing retrieval-based methods, despite only requiring minor
modifications.

I. INTRODUCTION

Data has been integral to the performance of deep learning-
based methods across a wide variety of domains [22, 23].
Unsurprisingly, the same has found to be true for imita-
tion learning (IL) methods in robotics, for which the most
compelling examples often require hundreds to thousands of
collected demonstrations in order to learn a single task [30].
Unfortunately, this makes scaling IL difficult. When trying
to learn a new task, one needs to collect a large number
of demonstrations to achieve a reasonable level of in-domain
success while simultaneously ensuring sufficient diversity for
generalization to out-of-distribution scenarios.

One approach for learning from limited demonstrations is
retrieval from prior datasets. Retrieval-based methods augment
small demonstration datasets with relevant samples taken from
large, widely available robotics datasets [21]. This is typically
done by learning a representation of all state-action pairs, and
“retrieving” those from the prior dataset that are most similar
to the target demonstration data according to some metric, e.g.
distance in latent space [6, 14, 20]. By providing the policy

with additional relevant state-action pairs, retrieval reduces the
need for collecting additional expert demonstrations for the
target task.

Though this has held in practice, the derivation of retrieval-
based methods has largely hailed from intuition. For example,
if a data point in the prior dataset is close to that of a target
demonstration in latent space, intuitively we can hope that
adding it to the training dataset might help the learned policy.
While this may help justify the performance boost afforded by
retrieval-based methods, their design choices are still largely
heuristic. In particular, the use of the nearest-neighbor L2
distance metric for scoring prior data is often chosen arbi-
trarily without principled justification. This begs the question:
mathematically, how should we interpret retrieval? Moreover,
the possibility remains that a more grounded understanding of
retrieval could address the shortcomings of existing heuristic
approaches. In this work, we develop such an understanding
through the probabilistic lens of importance sampling, and
propose a new method for retrieval.

At their core, retrieval-based methods aim to leverage a
broader data distribution, denoted as pprior, to estimate the
loss of a learned policy on the distribution defined by a
set of target demonstrations, pt. Usually, to estimate the
expectation of a random variable under a target distribution p
with samples from an easier-to-sample-form distribution q, one
would weight samples from q by the ratio of probability den-
sities, p/q. Crucially, when dividing by q, these “importance
weights” overcomes the bias introduced by using samples from
q instead of p. Though retrieval parallels this framework by
leveraging samples from pprior to improve behavior cloning on
the task defined by pt, existing retrieval methods can be viewed
as only approximating the numerator of this ratio pt, leading
to inherent bias. Moreover, the use of the aforementioned
nearest-neighbor distance metric is of high variance because
of its susceptibility to noise. This leads to two avenues for im-
provement, which we address through our method, Importance
Weighted Retrieval, or IWR.

IWR simultaneously addresses both the bias and high-
variance of prior retrieval methods by applying Gaussian ker-
nel density estimation (KDE) to estimate the full importance
weights pt/pprior. Using Gaussian KDEs produces smoother
estimates by considering all data points within a dataset
instead of just the nearest-neighbor (see Fig. 2). Then, by
using KDEs to approximate both pt and pprior, IWR uses
importance weights to retrieve data, mathematically ensuring



Fig. 1: IWR consists of three main steps: (A) Learning a latent space
to encode state-action pairs, (B) Estimating a probability distribution
over the target and prior data, and using importance weights for
data retrieval, and (C) Co-training on the target data and retrieved
prior data. By augmenting our high-quality but much smaller target
dataset with diverse, relevant prior samples, we learn more robust
and performant policies.

a more accurate approximation of the expectation under pt
(Fig. 1).

Practically, we find that these choices allow IWR to retrieve
higher quality data, in terms of relevancy to the target task
and diversity across task phases. Moreover, these benefits are
not limited to a single retrieval-based IL method – we find
that IWR consistently improves the quality of retrieved data
when applied to a number of different prior works by simply
replacing nearest-neighbor distance queries with estimated
importance weights. For example, on the LIBERO benchmark,
using IWR increases average success rates by 5.8% on top of
SAILOR [20], 4.4% on top of Flow Retrieval [14], and 5.8%
on top of Behavior Retrieval [6]. On real-world tasks with the
Bridge V2 Dataset [27], we find the performance improvement
afforded by IWR to be more significant, increasing success rate
by 30% on average, in comparison to Behavior Retrieval.

II. RELATED WORK

Retrieval Retrieval enables few-shot imitation learning by
augmenting a target dataset, consisting of a handful of demon-
strations for a task, with additional prior data from pre-existing
datasets such as DROID [12], OpenX [21], and Bridge [27].
Typically, the retrieved prior data is used to augment the
dataset for imitation learning [6, 14, 19], with the focus of
these works primarily about retrieval, not algorithmic improve-
ments [20, 14]. BehaviorRetrieval [6] and FlowRetrieval [14]
both learn a latent embedding space of state-action pairs and
optical flow respectively, and they retrieve prior data points
that are closest to the latent embeddings of the target data
points. SAILOR [20] learns latent embeddings through skill-
based representation learning, and they also retrieve data points
that are closest to the target data in latent space. STRAP [19]
uses foundation model latent embeddings and retrieves sub-
trajectories based on dynamic time warping and proximity in
latent space. While most of these works focus on altering latent
representations, our work instead focuses on improving the
Euclidean distance metric typically used for retrieval.

Importance Sampling Outside of few-shot imitation learn-
ing, importance sampling, from which IWR is motivated, has
been used for data selection in a variety of domains. Works
in imitation learning use importance weights to discard sub-
optimal transitions [29] or for off-policy evaluation [9]. In
reinforcement learning, importance weights have been used for
prioritized sampling [26]. Perhaps most similar to the retrieval
problem, importance weights have been used to select relevant
documents for training language models [28]. While more

complicated techniques for estimating importance weights
have been developed, from telescoping classifiers [3, 24] to
generative models [5], we find simple Gaussian KDEs to be
effective.

Data for Imitation Learning The paradigm of co-training
policies with large amounts of additional, diverse [21, 12]
or even simulated [16] data has proven effective in imitation
learning. While these works take a blanket approach, retrieval
seeks to identify the most relevant data for a particular tasks.
Other works have sought to identify relevant data, but with
different goals in mind. Hejna et al. [10] identify group
weights in large robot datasets to accelerate behavior cloning.
Others filter data based on various quality metrics [2] using
mutual information [11], preferences [13], or demonstrator
expertise [1]. Instead of selecting data, other works opt to
generate similar data leveraging simulation [8, 18].

III. PRELIMINARIES

A. Problem Setup

The objective of imitation learning (IL) methods is to learn
a policy π(a|s), which mimics the expert behavior within
an environment with states s and actions a. Typically, the
policy is learned using a dataset D of expert trajectories
τ = {s0, a0, . . . , sT , aT }, where st, at correspond to states
and actions at timestep t, and T is the length of the trajectory.
While IL has shown success in simulated and real tasks, col-
lecting the requisite expert demonstrations for IL is expensive
and has to be repeated for each new task one wishes to learn.

Retrieval-based methods have sought to address this short-
coming by leveraging existing prior data when learning a new
task. Specifically, we consider a few-shot setting in which we
only have a handful of expert demonstrations for a new target
task, our target dataset Dt. Retrieval-based methods assume
access to a much larger prior dataset Dprior, consisting of more
diverse tasks and scenes. To decrease the number of demon-
strations needed in Dt, retrieval-based methods carefully select
data from Dprior, which is then used to co-train the policy. We
denote this dataset of retrieved state-action pairs as Dret ⊂
Dprior. Mathematically, this leads to the following weighted
behavior cloning objective for a parameterized policy πθ:

max
θ

α
1

|Dt|
∑︂

(s,a)∈Dt

log πθ(a|s)+(1−α)
1

|Dret|
∑︂

(s,a)∈Dret

log πθ(a|s)

(1)
where α (typically 0.5) is the weighting coefficient between
the target and retrieved data. By training on additional data,
retrieval-based methods aim to increase the robustness of the
learned policy.

Though retrieval methods often differ in the specific
representations they learn, most share a common selection
mechanism: L2 distance between embedding representations
z of the target and prior data. To learn latent embeddings,
BehaviorRetrieval [6] trains a variational autoencoder (VAE)
over state-action pairs (st, at), FlowRetrieval [14] learns a
VAE over the optical flow for each state st, and SAILOR [20]
encodes a sub-trajectories (st, at, . . . , st+k, at+k) using



skill-based representation learning. Despite differences in
how these latent spaces are learned, all of these methods
select data based on the L2 distance. Denoting the learned
encoders as fϕ and the representations they produce as
z = fϕ(s, a) the selection rule can be written as:

Dret :=
{︂
(s, a) ∈ Dprior

⃓⃓⃓
min(s′,a′)∈Dt ∥fϕ(s, a)− fϕ(s

′, a′)∥22 < ζ
}︂

(2)
where ζ is the retrieval threshold, often chosen such that Dret
is small percentage of Dprior. This intuitively makes sense,
as data with representations that are close to those of Dt are
likely useful for training. In the next section, we re-examine
retrieval through a probabilistic lens.

B. From samples to densities

To characterize retrieval probabilistically, we define
marginal state-action distributions pt, pprior, and pret, from
which we assume Dt, Dprior, and Dret are sampled. Then, the
previous IL objective (Eq. (1)) becomes

max
θ

αE(s,a)∼pt [log πθ(a|s)]+(1−α)E(s,a)∼pret [log πθ(a|s)] .
(3)

However, for a given target task, we are primarily interested
in maximizing the policy likelihood under the target task
distribution, i.e. E(s,a)∼pt [log πθ(a|s)]. In order to maximize
this policy likelihood when optimizing Eq. (3), we would like
retrieval-based methods to align the distribution of retrieved
data such that it is equivalent to that of the target task, i.e.
pt ≈ pret. Then, Eq. (3) would amount to behavior cloning
on the target task distribution, which is our desired objective,
while using the additional samples from Dret, which we would
expect to improve performance.

Examining the selection rule Eq. (2) used in prior work,
we find that it considers the minimum squared distance to a
data point in Dt, corresponding to an approximation of pt,
as it does not leverage samples from Dprior (we formalize
this connection in in Section IV-A). First, we note that this
approximation of pt is imprecise as it only uses the nearest
neighbor in Dt, resulting in high variance and susceptibility to
noise. Second, even if Eq. (2) were able to perfectly recover
pt, it still only uses estimates of pt to retrieve from Dprior. The
resulting retrieved distribution pret is thus closer to the product
of densities pt · pprior than pt, as the prior data is first sampled
according to pprior, and then retrieved according to a condition
of pt. We address these limitations through IWR, ensuring that
we can retrieve a more accurate approximation of the desirable
distribution.

IV. IMPORTANCE WEIGHTED RETRIEVAL

In this section, we address the shortcomings of the standard
retrieval selection rule by introducing our method Importance
Weighted Retrieval (IWR). Similar to other retrieval methods,
we assume access to an embedding function fϕ, typically
taken from a VAE. Given the resulting embeddings from fϕ,
we first discuss how we can better model the distributions
used in retrieval with Gaussian KDEs. Second, we discuss
how modeling the prior distribution pprior, which we use to
compute importance weights pt/pprior, allows us to retrieve

data from the desired distribution pt. Our approach can be
applied in conjunction with a broad set of retrieval-based
methods to improve performance.

A. Improved Density Modeling

As discussed in Section III-B, standard retrieval methods
select data points from Dprior that minimize the L2 distance
from their nearest neighbors in Dt, which may suffer from high
variance. To address this, we use lower variance estimates of
the probability density function (pdf), which considers all data
points (Fig. 2).

The condition from Eq. (2) can equivalently be
written as follows using a max instead of a min:
max(s′,a′)∈Dt −∥fϕ(s, a)− fϕ(s

′, a′)∥22 > −ζ. To smooth
this retrieval rule, we replace the hard maximum with a
log-sum-exp parameterized by temperature h, resulting in a
soft approximation that aggregates contributions from all data
points. The retrieved dataset then becomes:

Dret :=
{︂
(s, a) ∈ Dprior

⃓⃓⃓
1
h2 log

∑︁
(s′,a′)∈Dt

(4)

exp
(︂
−∥fϕ(s, a)− fϕ(s

′, a′)∥22
/︂
h2

)︂
> −ζ. (5)

Here, the exponential term within the sum is proportional
to the multivariate Gaussian pdf N , with mean fϕ(s

′, a′) and
covariance matrix h2I , evaluated at fϕ(s, a). This implies that
the sum over all such Gaussians – each centered at each data-
point in Dt – is proportional to a Gaussian kernel density
estimate (KDE) of Dt, assuming isotropic covariance I and
bandwidth h. In the limit as the bandwidth h → 0, the
KDE becomes sharply peaked at each data point in D, and
the density at a point is dominated by its nearest neighbor
– recovering the original retrieval rule from Eq. (3). Under
this view, the original retrieval rule can be interpreted as a
limiting case of a KDE estimate of pt implying that prior
retrieval methods implicitly rely on overly restrictive modeling
assumptions.

Instead, we directly model distributions with Gaussian
KDEs using well-calibrated parameters that smooth across
data points to obtain lower variance estimates (See Fig. 2).
Specifically, we employ bandwidths h set to multiplicative
factor of Scott’s rule [25] and use the sample covariance
matrix Σ, giving us

pKDE(z) = 1
|D|

∑︁
z′∈fϕ(D)

(︁
(2π)d|h2Σ|

)︁−1/2
(6)

exp
{︁
− 1

2 (z − z′)⊤(h2Σ)−1(z − z′)
}︁

(7)

where z and z′ are the representations of state-action pairs
from fϕ and fϕ(D) denotes an encoded dataset. In comparison
to the original retrieval rule, using Eq. (6) to model pt prefers
retrieving data points near multiple targets and better handles
dependencies among features via Σ.

B. Importance Weighting

Our ultimate goal in retrieval is to estimate the expectation
of the loss under the target distribution pt using samples from
the prior distribution pprior. This bears a striking resemblance



Fig. 2: In this toy example, using L2 distance in latent space leads to
the left point discarded, and the right point retrieved. However, when
using IWR to estimate the probability density of the target data, the
left point is retrieved. This is because IWR has a smoothing effect
and uses many target points for retrieval. In this example, we may
expect the left point to be relevant, as it is close to many target points,
as IWR correctly determines.

to importance sampling. Instead of selecting data according to
pt, we select data according to the importance weight pt/pprior
as

Epprior [pt/pprior log π(a|s)] = Ept [log π(a|s)] (8)

which ensures that the expectation under samples from pprior
is the same as that of pt. Practically, we can use the aforemen-
tioned KDE estimators to fit importance weights as pKDE

t /pKDE
prior

following Eq. (6). Doing so overcomes the bias in the retrieval
distribution introduced by the prior dataset Dt.

Then, given a particular threshold we select data points from
Dprior which have the highest estimated importance weights
pKDE

t /pKDE
prior . Though consistent with prior retrieval works, it

is not an unbiased estimate. Alternatively, we could obtain
an unbiased estimate by following an importance resampling
procedure [7], where K data points are sampled from Dprior
based on estimated importance weights. However, such an
approach could be higher variance due to the nature of
importance sampling procedures, and we thus follow the
simple thresholding procedure that easily integrates with prior
methods.

C. Putting It All Together

Beginning with a handful of demos in Dt, the final recipe
for IWR involves the following steps:
1. Representation Learning. First, we train a model fϕ
to produce low-dimensional representations z of state-action
pairs or sequences. Most prior works in retrieval address
this step. For example, SAILOR uses “skill” representation
learning while Flow Retrieval uses VAEs on learned from
visual flow. IWR is compatible with all types of representation
learning, so long as the learned latent dimension is sufficiently
small for a Gaussian KDE. In this manner, IWR can be
combined with several prior works in retrieval.
2. Importance Weight Estimation. Following Eq. (6), we fit
Gaussian KDEs to embedding representations of Dt and Dprior
to estimate both pt ≈ pKDE

t and pprior ≈ pKDE
prior . Then, we query

the KDEs at z for embedded state-action chunks or sequences
in Dprior to estimate their importance weights pKDE

t /pKDE
prior . In

practice, Dprior is often too big to fit with a single KDE, so
we estimate pKDE

prior using random batches from Dprior.

Fig. 3: We evaluate on simulated environments: Robomimic Square,
a suite of 5 LIBERO-10 tasks, which each task consisting of two
subtasks. For our real experiments, we consider 3 Bridge tasks, with
Eggplant being a long-horizon task.

3. Data Retrieval. We then select data with the highest im-
portance weights to train on, following a similar rule to that of
Eq. (2) except with importance weights; e.g. pKDE

t /pKDE
prior > η.

Similar to prior work, the threshold η is determined
experimentally or by examining the distribution of scores.
4. Policy Learning. Finally, we co-train our policy with the
retrieved data following Eq. (1).

In comparison to contemporary methods, IWR has minimal
overhead as it only modifies the latter steps in retrieval for
importance weight estimation.

V. EXPERIMENTS

In this section we answer the following questions: 1) How
much does IWR improve performance? 2) Is IWR broadly
applicable to all retrieval methods? 3) What contributes to
IWR’s performance?

A. Experimental Setup

Simulated Tasks. We evaluate on two simulated domains
used in prior retrieval work: Robomimic Square [17] and
LIBERO [15].
• Robomimic Square: We select the Square Assembly task

from Robomimic, a popular imitation learning benchmark.
We use the same datasets as Behavior Retrieval [6], where
Dt consists of 10 demonstrations lifting the square nut into
the goal peg, and Dprior consists of 400 trajectories, with 200
placing the square nut on the goal peg, and 200 adversarial
episodes with the wrong peg. Similar to prior work [6, 14],
we retrieve 30% of Dprior.

• LIBERO: We use the LIBERO benchmark [15], and select
the 5 tasks from LIBERO-10 with the lowest non-trivial
success from [19], where each Dt consists of 5 demos.
Following [19], we use LIBERO-90 as Dprior and condition
our policy on one-hot task vectors. For each task we retrieve
2.5% of the prior data.
Real World Tasks. We further instantiate experiments in the

real world using the Bridge setup [27]. We include 3 Bridge
tasks: Corn with 5 demos, where the robot is tasked with
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Task Key                                                                   4: Put yellow and white mug on right plate                  8: Pick up chocolate pudding and put it in tray 
1: Put red mug on plate                                             5: Put red mug on right plate                                         9: Others                                    
2: Pick up salad dressing and put it in tray               6: Put chocolate pudding to left of plate                      10: Put chocolate pudding to right of plate
3: Put red mug on left plate                                      7: Put white mug on left plate                                      11: Put white mug on plate 
                                                                               

1: Put red mug on plate 

4: Put yellow and white mug on right plate                       
5: Put chocolate pudding to left of plate                             
6: Put chocolate pudding to left of plate

7: Put white mug on left plate
8: Pick up chocolate pudding and put it in tray 
9: Others
10: Put chocolate pudding to right of plate
11: Put white Mug on Plate

Fig. 4: Difference in retrieval distributions between BR and IWR
for the Mug-Pudding task in terms of both tasks (left) and timesteps
(right). (Left) Prior tasks which form exact sub-tasks of the target
are marked as Relevant, tasks with at least one common object with
target as Misc, and the rest as Harmful. (Right) Demonstrations are
divided into 10 bins. Green represent samples from either relevant
or temporally-appropriate portions of partially-relevant Misc tasks.
More details can be found in the Appendix.

moving a corn onto a plate; Carrot with 10 demos, where
the robot moves a carrot into the sink, and Eggplant with 20
demos; a long-horizon task consisting of grasping the eggplant,
placing it into the bowl, and transferring the bowl with the
eggplant into the dish rack. These three tasks are unseen in
the Bridge-V2 dataset. However, the prior dataset consists
of similar tasks performed in many toy sinks, including the
specific toy sink for our tasks, and thus we may expect transfer
from this prior dataset.

Our Dt consists of VR-teleoperated demonstrations on a
WidowX, and our Dprior consists of a subset of Bridgev2
Dataset [27], where we take trajectories with keyword sink,
leading to 130k transitions.

Baselines We compare IWR to popular retrieval baselines:
• Behavior Cloning (BC) is only trained to imitate Dt.
• Behavior Retrieval (BR) learns a VAE over state-action

pairs, and it retrieves data from Dprior based on L2 distance
in the latent space.

• Flow Retrieval (FR) learns a VAE over optical flow
between frames and actions. Similar to BR, it retrieves data
via L2 distance in latent space.

• SAILOR (SR) learns a skill-based latent space by com-
pressing state-action chunks. SAILOR retrieves data via L2
distance in latent space.

We evaluate the performance of different methods by training
Diffusion Policy [4] on the retrieved and target data following
Eq. (1). By default, we use the representations from BR for
IWR, as we found them to perform best overall. More details
can be found in the Appendix.

B. How much does IWR improve performance?

Simulated Experiments. The left half of Table I provides
results for simulated tasks. In Robomimic Square, retrieval is
crucial, as training only on Dt leads to extremely poor perfor-
mance. Here, where retrieving incorrect data is detrimental,
IWR consistently outperforms other methods, likely due to
its lower variances estimates of pt. Only FR exhibits similar
performance, likely because the prior data includes only two
motions (peg to left or right) which is readily captured by
visual flow. In LIBERO, where Dprior is significantly larger and

more diverse, SR and FR perform considerably worse, often
under-performing BC. For LIBERO, BR faces two challenges:
(1) object similarity across tasks results in retrieval of irrele-
vant demonstrations, and (2) tasks often share similar starting
configurations, which bias retrieval towards initial samples
instead of more informative later-stage actions. Though these
issues are correlated, even if we only retrieve from relevant
tasks, the bias towards starting samples can still compromise
performance.

IWR addresses these limitations by upweighting samples
containing underrepresented objects or occurring later in the
demonstrations. Consider the Mug-Pudding task, which re-
quires placing a white mug on a plate and a pudding on
the left of the plate. In this case, Fig. 4 shows that BR
retrieves irrelevant tasks containing either “chocolate pudding”
or “white mug” and also disproportionately samples from the
initial phase (∼40%). IWR corrects both issues, retrieving
a higher percentage of relevant tasks and a more balanced
distribution across timesteps as importance weights correct for
the bias in Dprior.

On the other hand, for Mug-Microwave (place mug inside
microwave), BR and IWR perform similarly because the
critical subtask of “inserting into microwave” is absent from
all priors, resulting in a consistent failure mode where objects
collide with the microwave. This failure mode cannot be
overcome with better or more sampling. In contrast, for Soup-
Cheese, BR already achieves high performance due to the
task’s simplicity and distinctive priors - one of the task’s
component involves a cheese box that is visually different from
other objects in similar task setting (cans, ketchup). With both
BR and IWR retrieving over 50% from directly relevant tasks,
IWR’s improved retrieval offers minimal additional benefit.

Real World Experiments. We evaluate IWR and baselines
on a real-world Bridge sink environment, with performance
on the three tasks reported in Table I. For all of these tasks,
using retrieved prior data improves performance. Qualitatively,
the BC policies often early grasp or miss the object, which
additional pick-and-place retrieved data helps mitigate. IWR
consistently leads to the largest improvements, especially for
the long-horizon Eggplant task, where IWR is able to achieve
partial success on 100% of rollouts, compared to the best per-
forming retrieval method, which only achieves partial success
on 50% of rollouts. For this longer horizon task, the effect
of IWR’s data retrieval leads to a drastic improvement, as
additional data may alleviate issues with accumulating errors
across subtasks.

Among other retrieval methods, FR performs poorly across
most tasks, whereas SR is particularly successful for Corn.
We hypothesize that for tasks in more cluttered scenes, such
as Corn, FR’s embeddings are not precise enough, because
the optical flow may be noisy. SR’s performance in Real may
be because Bridge tasks have lower-frequency control, so its
skill-based, chunking representations consist of more cohesive
motion than in simulated tasks.



TABLE I: We evaluate across a suite of simulated (Square, Mug-Microwave, .., Soup-Sauce) and real (Corn, .., Eggplant) tasks. We find
that IWR consistently outperforms previous retrieval baselines. We report success rates in % over 3 seeds for simulated tasks. For real-world
tasks, we report success rate over 20 trials. For the long-horizon Eggplant task, we also record Partial Success (PS) for completing subtasks.
We bold the best-performing method.

Method Square Mug- Mug- Mug- Soup- Soup- Corn Carrot Eggpl. Eggpl.
Microwave Mug Pudding Cheese Sauce Partial Full

BC 1 ± 0.9 72 ± 0.9 54 ± 3.3 21 ± 2.4 58 ± 6.8 32 ± 2.5 4/20 2/20 9/20 2/20
BR 69 ± 5.0 81 ± 0.5 81 ± 2.4 33 ± 3.3 83 ± 4.5 43 ± 2.7 2/20 8/20 8/20 3/20
SR 40 ± 4.9 67 ± 2.4 67 ± 4.7 14 ± 0.9 76 ± 4.3 51 ± 2.2 12/20 3/20 10/20 2/20
FR 79 ± 5.0 79 ± 2.2 59 ± 4.3 17 ± 2.9 37 ± 3.8 45 ± 5.5 2/20 3/20 6/20 0/20
IWR 84 ± 2.8 81 ± 3.6 87 ± 2.0 45 ± 1.4 83 ± 3.3 54 ± 5.7 9/20 14/20 20/20 11/20

TABLE II: We ablate existing retrieval embeddings with importance weights for retrieval (IWR).

Method Square Mug- Mug- Mug- Soup- Soup- Corn Carrot Eggpl. Eggpl.
Micro. Mug Pudding Cheese Sauce Partial Full

SR 40 ± 4.9 67 ± 2.4 67 ± 4.7 14 ± 0.9 76 ± 4.3 51 ± 2.2 12/20 3/20 10/20 2/20
SR-IWR 57 ± 9.4 81 ± 3.0 70 ± 3.4 20 ± 0.9 85 ± 1.4 48 ± 3.4 9/20 13/20 16/20 1/20

FR 79 ± 5.0 79 ± 2.2 59 ± 4.3 17 ± 2.9 37 ± 3.8 45 ± 5.5 2/20 3/20 6/20 0/20
FR-IWR 67 ± 1.9 81 ± 4.8 69 ± 1.1 18 ± 0.9 49 ± 3.6 42 ± 3.3 3/20 11/20 8/20 0/20

C. IWR with Other Retrieval Methods

Though we use the latent space from BR for IWR
in Table I, IWR can be combined with other learned
representations such as those from FR and SR with minimal
modification; we simply estimate importance weights using
KDE’s for retrieval instead of using L2 distance. In Table II,
we combine IWR with SR and FR for simulated and real tasks.
Across simulated tasks, we generally find that IWR augmented
retrieval leads to stronger policy performance. In real, adding
IWR to FR improves performance for all tasks. For SR, using
IWR is generally helpful with the exception of the Corn task,
in which the SR base policy performed exceptionally well. For
Eggplant, we found the SR-IWR policy to achieve only one
fewer full completion than SR, but it achieved 6 more partial
successes, showing its robust real-world performance. Overall,
our results suggest that IWR can be a simple but effective way
to improve retrieval across different latent representations.

D. Ablations

Importance Weights. While IWR computes importance
weights pt/pprior as described in Eq. (8), prior works only
consider pt. In Table IV, we ablate whether this normalization
is important for IWR. Across simulated tasks, we generally
find the normalization by pprior to be helpful, suggesting that
using importance weights for retrieval leads to effective policy
performance.

Bandwidth Parameters. We set the bandwidth factor for
all Gaussian KDEs to multiplicative factor of Scott’s rule,
e.g. h = c × |D|−1/(d+4) where d is the dimension of the
embedding vectors and c is the multiplicative constant. The
bottom row of Table IV shows the performance of IWR in
LIBERO when we halve the multiplicative factor c from 4 to 2.
While performance is relatively robust, we find that smoother
KDEs are slightly better on average.

Retrieval Thresholds. The amount of data retrieved can af-
fect the policy performance. In Table III, we show that IWR’s
performance across different thresholds. Consistent with prior

work, choosing the correct threshold is important. We see this
effect in Square where a threshold of more than 50% forces
the retrieval of prior data from the incorrect task execution.

VI. CONCLUSION

We introduce Importance Weighted Retrieval, an importance
sampling-inspired method for retrieval. We find that IWR
is able to better select data for retrieval, as evidenced by
improved performance across both simulated and real tasks,
including a long horizon task. Moreover, as IWR can easily
be used with several retrieval works, we hope our insights
will become standard practice for few-shot imitation learning.

Limitations. While IWR can be effectively used on top
of existing latent spaces, we do not tackle the question of
what makes an effective latent space, leaving this direction
for future work. Moreover, due to the constraints of existing
large scale prior datasets, our evaluation is largely limited
to pick-place like tasks. Future work may explore retrieval
for more complex and dexterous tasks. Finally, IWR assumes
the use of Gaussian KDEs, which can become computational
intractable and numerically unstable in higher dimensions,
ultimately restricting the size of the latent representation that
can be used for retrieval. Future work could seek to use more
advanced methods for estimating importance weights.
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TABLE IV: We ablate removing the denominator pprior in IWR and halving the Gaussian KDE bandwidth parameter.

Method Square Mug-Micro. Mug-Mug Mug-Pudding Soup-Cheese Soup-Sauce

IWR 84 ± 2.8 81 ± 3.6 87 ± 2.0 45 ± 1.4 83 ± 3.3 54 ± 5.7
IWR (w/o norm) 61 ± 1.0 79 ± 2.1 93 ± 0.5 41 ± 5.4 83 ± 3.8 52 ± 4.7
IWR (1/2 bw) – 79 ± 1.4 92 ± 1.6 40 ± 0.9 79 ± 1.4 56 ± 1.6

APPENDIX

Please find videos of sample task rollouts and more on our site: https://sites.google.com/view/iwr-corl/home
TABLE III: IWR across re-
trieval thresholds.

Square
% Ret Success

20 71 ± 4.1

30 84 ± 2.8

50 88 ± 1.9

60 54 ± 5.9

Hyperparameters. We provide hyper-parameters for all retrieval methods in Table V and for
Diffusion Policy [4], which was used for all policy learning evaluations, in Table VI. While we
found the original hyper-parameters from Lin et al. [14], Du et al. [6] to work well for Robomimic
and Bridge, we found that they did not perform well for LIBERO, likely due to the use of large
action chunks. We thus modified the VAE to accept action chunks, use state history, and down-
weight image reconstruction which lead to overall better performance for all methods and baselines.
This obviated the need to additionally append the action to the learned representation z as done
by Lin et al. [14], Du et al. [6].

Architectures. For all VAEs we use a ResNet18 encoder-decoder architecture, with MLPs in between to process the
concatenated image embeddings, robot proprioceptive state, and actions. For LIBERO only, we additionally use a small 2
layer transformer for the action encoder and decoder instead of projection layers from the MLP.

Simulation Evaluation Procedure. For evaluating policies in sim we run three seeds for 100k timesteps. We evaluate each
policy every 25K steps for 50 episodes. Following the evaluation procedure of Mandlekar et al. [17], Chi et al. [4], we take
the average of the best performing checkpoint across all seeds.

Real Evaluation Procedure. For real world evaluations we train a single policy for a fixed number of timesteps and run
20 evaluation trials.

TABLE V: Hyperparameters used for retrieval methods.

Method Parameter Robomimic LIBERO Bridge

Shared

Optimizer Adam
Learning Rate 0.0001

Batch Size 256
Training Steps 200,000 200,000 400,000

Image Resolution (84, 84) (128, 128) (224, 224)
Augmentations None

β 0.0001
z dim 16 32 32

BR

Image Recon Weight 1 0.01 1
Action Chunk 1 16 4
Append Action TRUE FALSE TRUE
State History 1 2 1

FR

Steps between Flow Frames 8 8 8
Image Recon Weight 1 0.01 1

Action Chunk 1 16 4
Append Action TRUE FALSE TRUE
State History 1 2 1

SAILOR

Obs & Action Chunk 10
Time Loss Weight 0.000001

Training Steps 200,000
Max Seq Offset 50

https://sites.google.com/view/iwr-corl/home


TABLE VI: Diffusion Policy hyperparameters used for policy learning evaluations.

Parameter Value

Optimizer Adam
Learning Rate 0.0001

Batch Size 256
Training Steps 100,000
Obs History 2

Action Chunk 16
Image Resolution See Table V

Augmentations Random Scale and Crop (0.85, 1.0)

In Fig. 5 - Fig. 9, we provide additional visualizations of the retrieved data across BR and IWR for all the Libero simulated
tasks. In Fig. 10 we provide visualization for the Robomimic Square task.

Retrieval Distribution Across Tasks For the task-based retrieval visualization (plotted on left in Fig. 5 - Fig. 9), we classify
each retrieved task as “Relevant” (green), “Mixed” (blue) or “Harmful” (red). We now explain how we determine whether the
task is Relevant, Mixed, or Harmful. First, a task is Relevant if it corresponds exactly to the target task. For example, the
target task Mug-Pudding Fig. 7 (Put white mug on the plate and put chocolate pudding to right of the plate) has two relevant
tasks: “Put chocolate pudding to right of the plate” and “Put white mug on the plate”.

We classify tasks from the prior dataset as Mixed if part of the trajectory is similar to the target task. For instance, learning
how to pick up a target object is useful, even if the prior task is otherwise different. For instance, for Mug-Pudding, “Put
chocolate pudding to left of plate” can be useful if we retrieve from the Reach/Pick-up portion of the trajectory, and thus, we
label this prior task as Mixed. Similarly, for Mug-Pudding, “Put red mug on left plate” is classified as Mixed, because the
action of placing an object on the plate is useful for the target task.

The remaining tasks are marked as harmful since they have nothing in common with the target task.
Retrieval Distribution Across Timesteps For timesteps (plotted on the right in Fig. 5 - Fig. 9), demonstrations are divided

into 10 equal bins. Green bars represent samples from either relevant tasks or temporally-appropriate portions of partially-
relevant mixed tasks (e.g. initial “Reach” and “Pickup” steps from “Put chocolate pudding to left of plate” are relevant to the
target task even though the final portion is not).

Across all plots, we see that IWR consistently helps in both (1) retrieving a higher portion of directly relevant tasks and
(2) retrieves a more balanced distribution across timesteps. For Robomimic Square Fig. 10, since there are only two prior
tasks, both of which are visually very similar, the performance gains in IWR are likely due to retrieving more samples from
the reach/pick-up section (grasping the square), which is where most of the failure cases are present.

Note: The visualizations in the Appendix include the following minor changes compared to the figure in the main paper: (1)
The legend “Misc” is replaced with “Mixed” since this labeling better captures the tasks listed under it. (2) The “Others” bin
is now marked as “Harmful” (red) instead of “Misc” (blue) since all tasks in the “Others” category share neither a common
object nor an ending configuration and are therefore adversarial if retrieved. (3) Tasks with similar ending configurations (such
as the earlier example,“Put red mug on left plate”) were originally marked as “Harmful” instead of “Misc”/“Mixed” in the
main paper plot, which we have now updated. In order to adhere to these stricter definitions, we have corrected these plots,
including an updated version of Figure 4 in the main paper. We plan to update the main paper when possible. Note that these
changes do not affect the retrieved values or the conclusions, but instead, more rigorously characterize retrieved tasks.
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Task Key                                                                   4: Close bottom drawer of cabinet and open top drawer   8: Put black bowl in bottom drawer of cabinet
1: Put black bowl on top of cabinet                          5: Put black bowl in top drawer of cabinet                        9: Others                                   
2: Put right moka pot on stove                                  6: Close top drawer of cabinet                                         10: Put yellow and white mug to front of white mug
3: Put ketchup in top drawer of cabinet                    7: Put black bowl on plate                                                11: Close microwave 
                                                                               

1: Put red mug on plate 

4: Put yellow and white mug on right plate                       
5: Put chocolate pudding to left of plate                             
6: Put chocolate pudding to left of plate

12. Pick up salad dressing and put it in tray

7: Put white mug on left plate
8: Pick up chocolate pudding and put it in tray 
9: Others
10: Put chocolate pudding to right of plate
11: Put white Mug on Plate

MUG MICROWAVE

Fig. 5: Mug-Microwave LIBERO Task. (Left) Retrieval distribution across tasks. (Right) Retrieval distribution across timesteps.
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Task Key                                                                    4: Pick up cream cheese and put it in tray                     8: Put red mug on right plate
1: Pick up chocolate pudding and put it in tray          5: Put chocolate pudding to left of plate                       9: Put white mug on plate                                   
2: Pick up black bowl on left and put it in tray          6: Others                                                                       10: Put white mug on left plate
3: Pick up alphabet soup and put it in tray                 7: Put red mug on left plate                                         11: Put yellow and white mug on right plate 
                                                                               

1: Put red mug on plate 

4: Put yellow and white mug on right plate                       
5: Put chocolate pudding to left of plate                             
6: Put chocolate pudding to left of plate

12. Pick up salad dressing and put it in tray

7: Put white mug on left plate
8: Pick up chocolate pudding and put it in tray 
9: Others
10: Put chocolate pudding to right of plate
11: Put white Mug on Plate

MUG MUG

Fig. 6: Mug-Mug LIBERO Task. (Left) Retrieval distribution across tasks. (Right) Retrieval distribution across timesteps.
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Task Key                                                                    4: Put red mug on plate                                                8: Put yellow and white mug on right plate
1: Pick up salad dressing and put it in tray                5: Pick up chocolate pudding and put it in tray            9: Put reg mug on right plate                                   
2: Others                                                                    6: Put chocolate pudding to left of plate                      10: Put chocolate pudding to right of plate
3: Put chocolate pudding to left of plate                    7: Put red mug on left plate                                         11: Put white mug on plate 
                                                                               

1: Put red mug on plate 

4: Put yellow and white mug on right plate                       
5: Put chocolate pudding to left of plate                             
6: Put chocolate pudding to left of plate

12. Pick up salad dressing and put it in tray

7: Put white mug on left plate
8: Pick up chocolate pudding and put it in tray 
9: Others
10: Put chocolate pudding to right of plate
11: Put white Mug on Plate

MUG PUDDING NEW

Fig. 7: Mug-Pudding LIBERO Task. (Left) Retrieval distribution across tasks. (Right) Retrieval distribution across timesteps.
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Task Key                                                                   4: Others                                                                 8: Pick up alphabet soup and put it in tray
1: Pick up cream cheese and put it in tray                5: Pick up tomato sauce and put it in basket           9: Pick up orange juice and put it in basket
2: Pick up butter and put it in tray                            6: Pick up ketchup and put it in basket                 10: Pick up alphabet soup and put it in basket
3: Pick up ketchup and put it in tray                         7: Pick up milk and put it in basket                      11: Pick up cream cheese box and put it in basket 
                                                                               

1: Put red mug on plate 

4: Put yellow and white mug on right plate                       
5: Put chocolate pudding to left of plate                             
6: Put chocolate pudding to left of plate

12. Pick up salad dressing and put it in tray

7: Put white mug on left plate
8: Pick up chocolate pudding and put it in tray 
9: Others
10: Put chocolate pudding to right of plate
11: Put white Mug on Plate

SOUP CHEESE

Fig. 8: Soup-Cheese LIBERO Task. (Left) Retrieval distribution across tasks. (Right) Retrieval distribution across timesteps.
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Task Key                                                                   4: Others                                                                 8: Pick up alphabet soup and put it in tray
1: Pick up cream cheese and put it in tray                5: Pick up milk and put it in basket                        9: Pick up butter and put it in basket                                   
2: Pick up butter and put it in tray                            6: Pick up orange juice and put it in basket          10: Pick up alphabet soup and put it in basket white mug
3: Pick up ketchup and put it in tray                         7: Pick up tomato sauce and put it in tray             11: Pick up tomato sauce and put it in basket 
                                                                               

1: Put red mug on plate 

4: Put yellow and white mug on right plate                       
5: Put chocolate pudding to left of plate                             
6: Put chocolate pudding to left of plate

12. Pick up salad dressing and put it in tray

7: Put white mug on left plate
8: Pick up chocolate pudding and put it in tray 
9: Others
10: Put chocolate pudding to right of plate
11: Put white Mug on Plate

SOUP SAUCE

Fig. 9: Soup-Sauce LIBERO Task. (Left) Retrieval distribution across tasks. (Right) Retrieval distribution across timesteps.
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