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Fig. 1: H3DP can not only achieve superior performance across 44 tasks on 5 simulation benchmarks, but also handle long-horizon challenging
manipulation tasks in cluttered real-world scenarios.

Abstract—Visuomotor policy learning has witnessed substan-
tial progress in robotic manipulation, with recent approaches
predominantly relying on generative models to model the action
distribution. However, these methods often overlook the critical
coupling between visual perception and action prediction. In this
work, we introduce Triply-Hierarchical Diffusion Policy (H3DP), a
novel visuomotor learning framework that explicitly incorporates
hierarchical structures to strengthen the integration between
visual features and action generation. H3DP contains 3 levels of
hierarchy: (1) depth-aware input layering that organizes RGB-D
observations based on depth information; (2) multi-scale visual
representations that encode semantic features at varying levels
of granularity; and (3) a hierarchically conditioned diffusion
process that aligns the generation of coarse-to-fine actions with
corresponding visual features. Extensive experiments demonstrate
that H3DP yields a +27.5% average relative improvement
over baselines across 44 simulation tasks and achieves superior
performance in 4 challenging bimanual real-world manipulation
tasks. Project Page: https://lyy-iiis.github.io/h3dp/.

I. INTRODUCTION

Visuomotor policy learning has emerged as a prevailing
paradigm in robotic manipulation [6, 65, 5, 62, 60]. Existing
approaches have increasingly adopted powerful generative
methods, such as diffusion and auto-regressive models, to
model the action generation process [34, 57, 11, 45, 22].
However, these predominant methods have focused primarily
on separately refining either the representation of perception or
actions, often overlooking establishing a tight correspondence
between perception and action. In contrast, human decision-
making inherently involves hierarchical processing of informa-
tion from perception to action [18, 3]. The visual cortex extracts
features in a layered fashion and performs hierarchical inference
based on visual motion perception, ultimately resulting in the
generation of structured motor behaviors [23, 4]. Inspired by
this, we argue that enabling learned visuomotor agents to
emulate such hierarchical behavior patterns is also critical for
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enhancing their decision-making capabilities.
Prior works have primarily focused on hierarchically mod-

eling the action generation process alone [50, 13], without
explicitly incorporating hierarchical structure throughout the
whole visuomotor policy pipeline. In this paper, we present
H3DP, a novel visuomotor policy learning framework grounded
in three levels of hierarchy: input, representation, and action
generation. This design reflects the hierarchical processing
mechanisms that humans use the visual cortex to perceive
environmental stimuli to guide motor behavior.

At the input level, to better leverage the depth information
in modern robotic benchmarks and datasets [19, 27, 44, 12],
H3DP moves beyond prior 2D approaches that primarily rely on
RGB or simple RGB-D concatenation, which has shown limited
effectiveness in prior work [62, 67]. We introduce depth-aware
layering strategy that partitions the RGB-D input into distinct
layers based on depth cues. This approach not only enables
the policy to explicitly distinguish between foreground and
background, but also suppresses distractors and occlusions [37,
1], thereby enhancing the understanding and reasoning of spatial
structure in the cluttered visual scenarios.

For visual representation, to address the limitations of
flattening image features into a single vector, which can discard
some spatial structures and semantic information [15, 41, 25],
H3DP employs multi-scale visual representation, where
different scales capture features at varying granularity levels,
ranging from global context to fine visual details.

In the action generation stage, H3DP incorporates a key
inductive bias inherent to the diffusion process: the tendency
to progressively reconstruct features from low-frequency to
high-frequency components [40, 8, 55], by hierarchical action
generation. Specifically, coarse visual features guide initial
denoising steps to shape the global structure (low-frequency
components) of action, while fine-grained visual features
inform the later steps to refine precise details (high-frequency
components). This establishes a tighter coupling between action
generation and visual encoding, enabling the policy to generate
actions that are semantically grounded in multi-scale perceptual
features.

We validate H3DP through extensive experiments on 44
simulation tasks across 5 diverse benchmarks, where it sur-
passes state-of-the-art methods by a relative average margin of
+27.5%. Furthermore, in real-world evaluations, we deploy
bimanual robotic systems to tackle four challenging tasks
situated in cluttered environments, involving high disturbances
and long-horizon objectives. H3DP achieves a +32.3% perfor-
mance improvement over Diffusion Policy in these real-world
scenarios.

II. RELATED WORK

Visual imitation learning. Numerous studies have proposed
efficient policy learning algorithms from different aspects [6,
65, 58]. As a representative approach, to endow the learned
policy multi-modality ability, Diffusion Policy [6] incorporates
the diffusion process to better represent the action distribution.
Based on DP, methods like DP3 [62, 61] and 3D-Actor [20],

designed for point cloud inputs, enhance the policy’s scene
understanding by refining the visual representation. Consistency
Policy [34] and ManiCM [30] modify the inference process to
achieve the inference acceleration. However, these approaches
focus solely on enhancing either the action generation or
the visual feature extraction, without explicitly modeling
the relationship between them. To address this issue, we
propose a hierarchical framework that couples multi-scale
visual representations with the diffusion process, enabling a
more structured integration between visual features and action
generation.

Leveraging hierarchical information for policy learning.
In the computer vision community, numerous studies have
leveraged hierarchical information to address a variety of down-
stream tasks [53, 56, 24, 38, 29, 42]. For example, standard
diffusion models [48, 17, 47, 49] and flow matching [26, 28, 10]
adopt the U-Net framework [41, 66], which exploits multi-scale
feature representations to retain rich contextual information
throughout the denoising process. VAR [52] innovatively
employs multi-scale visual representations with quantization
to perform image generation in an auto-regressive manner.
In robot learning, recent works [13, 33, 64] have also begun
to adopt hierarchical paradigms for policy learning. Dense
Policy [50] leverages a bidirectional extension strategy to enable
hierarchical action prediction. ARP [64] predicts a sequence
of actions at different levels of abstraction in a hierarchical
way. CARP [13] draws inspiration from VAR by employing a
multi-scale VQ-VAE [53, 38] to construct action sequences and
subsequently generating residual actions autoregressively using
a GPT-style architecture [35]. However, these algorithms model
only the hierarchical structure of the action generation process,
without explicitly addressing the crucial linkage between
visual representation and action in visuomotor policy learning.
In contrast, H3DP not only incorporates multi-scale visual
representations but also leverages the inherent strengths of
diffusion models to seamlessly integrate coarse-to-fine action
generation into the diffusion process itself. Furthermore, by
adopting a depth-aware layering strategy, H3DP maximizes the
utilization of hierarchical feature information across the input,
latent, and output stages, thereby enriching the policy learning
pipeline in a structured and semantically aligned manner.

III. METHOD

We employ three hierarchical structures to enhance the
policy’s understanding of visual input and predict more accurate
action distributions. At the input level, the RGB-D image is
discretized into multiple layers to improve the policy’s ability
to distinguish and interpret foreground-background variations.
Upon this, we adopt a multi-scale visual representation, wherein
coarse-grained features capture global contextual information,
while fine-grained features encode detailed scene attributes. On
the action side, correspondingly, the representations at different
scales are utilized to generate actions in a coarse-to-fine manner,
thus strengthening the correlation between action and visual
representations. A detailed discussion of each part will be
provided in the following sections.



A. Depth-aware Layering

Effective robotic manipulation hinges on robust spatial
understanding. While RGB data provides rich texture and
color information, depth supplies the critical geometric context,
including the relative spatial arrangement of objects and their
distances. Combining these modalities offers a powerful founda-
tion for scene comprehension. However, simply concatenating
RGB images with depth maps does not lead to performance
improvements [62, 67]. Hence, to fully exploit the geometric
structure inherent in depth maps, we introduce a depth-aware
layering mechanism inspired by Zhang et al. [63]. Pixels
with depth d are assigned to layer m using linear-increasing
discretization:

m =

⌊
−0.5 + 0.5

√
1 + 4(N + 1)(N + 2)

d− dmin

dmax − dmin + ϵ

⌋
,

(1)
which promotes the robot to focus more on its workspace. By
explicitly encoding objects distributed across different depth
planes, this structured representation retains all visual detail
while strategically utilizing depth to impose a meaningful
foreground-background separation, thereby enabling the policy
to selectively attend to different regions of the image. This
design can effectively boost the agent’s capacity for spatial per-
ception and interaction planning. Furthermore, we also conduct
comparisons against other discretization algorithms and perform
additional experiments to substantiate the effectiveness of our
proposed depth-aware layering method. The corresponding
results are provided in Appendix E3 and Appendix E7.

B. Multi-Scale Visual Representation

In visuomotor policy learning, visual representation plays
a crucial role in embedding input images and mapping them
to actions. An effective visual encoder should capture various
granularity features of the visual scenarios and guide the
policy to predict the action distribution. However, existing
methods typically extract features at a single spatial scale or
compress them into a fixed-resolution representation, limiting
the expressiveness of learned features [15, 41, 25]. To address
this problem, we hierarchically partition the feature map into
multiple scales, enabling the capture of both coarse structural
information and detailed local cues.

Interpolation and Quantization. After applying depth-
aware layering to the input image I , each layer Im is indepen-
dently encoded into multi-scale feature maps {fm,k|fm,k ∈
Rhk×wk×C}Kk=1, where {(hk, wk)}Kk=1 denotes the spatial
resolutions across scales. Adopting the quantization design
in VQ-VAE [53, 38], these feature maps {fm,k}Kk=1 are
quantized into discrete vectors drawn from a learnable codebook
Zm ∈ RV×C . Specifically, each feature vector f (i,j)

m,k is mapped
to its nearest neighbor in Euclidean distance:

f
(i,j)
m,k ← argmin

z∈Zm

∥z − f
(i,j)
m,k ∥2. (2)

By applying differentiable interpolation and lightweight con-
volution to the quantized features fm,k, we then obtain the

multi-scale visual representations {f̂m,k}Kk=1 for each layer
Im. The pseudocode of full encoding procedure is detailed in
Algorithm 1, Appendix B.

Training. To ensure consistent representations across scales,
we aim to minimize the consistency loss between the original
feature fm = Em(Im) and the representation f̂m,k at different
scales:

Lconsistency =

N−1∑
m=0

K∑
k=1

(∥∥∥f̂m,k − sg(fm)
∥∥∥2
2
+ β

∥∥∥fm − sg(f̂m,k)
∥∥∥2
2

)
,

(3)
where sg(·) is the stop gradient operator and β balances the
gradient flow between two terms. The visual encoder {Em}N−1

m=0

and codebook {Zm}N−1
m=0 are trained end-to-end, as described

in detail in Appendix B.

C. Hierarchical Action Generation

To match the inherent inductive biases of denoising pro-
cess [40, 8, 55], we leverage multi-scale visual representations
to model action generation in a coarse-to-fine manner. The
early stage actions are derived from representations that capture
global scene information, while fine-grained representations
are responsible for generating detailed action components.
This approach couples the visual representation and the action
generation process via reinforcing their correspondence at the
same hierarchical levels.

Inference. Our action generation module is a denoising
diffusion model conditioned on multi-scale features F = {f̂k =
{f̂m,k}N−1

m=0}Kk=1 and robot poses q. The denoising process
unfolds over T steps partitioned into K stages ∪Kk=1(τk−1, τk].
When t ∈ (τk−1, τk], the denoising network ϵ

(t)
θ conditioning

on the corresponding feature map f̂k and robot poses q, predicts
the noise component

ϵt = ϵ
(t)
θ (at|f̂k, q), (4)

then generates at−1 from at via:

at−1 =
√
αt−1

(
at −

√
1− αt · ϵt√
αt

)
+
√
1− αt−1 − σ2

t ·ϵt+σtϵ̃
t,

(5)
gradually transforming the Gaussian noise aT into the noise-
free action a0, where αt, σt are fixed parameters depending
on the noise scheduler, and ϵ̃t ∼ N (0, I) is a Gaussian noise.

Training. To train the denoising network ϵ
(t)
θ , we randomly

sample an observation-action pair ((I, q), a0) ∈ D and noise
ϵ ∼ N (0, I). The network is optimized to predict ϵ given a
noisy action conditioned on the final feature map f̂K and robot
pose q, via the objective:

Ldiffusion = Ea0,ϵ,t

[
γt∥ϵ(t)θ (

√
αta

0 +
√
1− αtϵ|f̂K , q)− ϵ∥2

]
,

(6)
where {γt} are pre-defined coefficients. More implementation
details can be found in Appendix A. By conditioning on
the final feature f̂K during training, gradients from the loss
propagate through the entire hierarchical encoder, implicitly
optimizing all {f̂k}Kk=1. This design promotes consistency
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Fig. 2: Overview of H3DP. H3DP integrates three hierarchical design principles across the perception and action generation pipeline.
At the input level, RGB-D images are decomposed into multiple layers based on their depth values. Then, we employ multi-scale visual
representations to capture features at varying levels of granularity. During the action generation, denoising process is divided into several
stages guided by multi-scale visual representations.

of representations at each scale for action generation while
enhancing training efficiency.

Discussions. Diffusion models inherently aim to pre-
dict the posterior average of the target distribution con-
ditioned on the provided features [7, 51], i.e., the op-
timal denoising network ϵ

(t)
θ∗ follows ϵ

(t)
θ∗ (at|f, q) =

Et,ϵ,a0,
√
αta

0+
√
1−αtϵ=at [ϵ|at, f, q]. Features at varying reso-

lutions retain information across distinct frequency domains.
Consequently, they provide robust guidance for generating
specific frequency components of the action during relevant
stages of the denoising process. Related experiments are shown
in Section IV-A3. By using lower-resolution features for earlier
stages and gradually refining the predictions with higher-
resolution features, the model benefits from both the stability
of coarse representations and the precision of fine details.

IV. EXPERIMENTS

In this section, we present extensive experiments across
simulated and real-world settings to demonstrate the efficacy
of H3DP. In addition, we perform thorough ablation analyses
to evaluate the contribution of each hierarchical design.

A. Simulation Experiments

1) Experiment setup: Simulation benchmarks and base-
lines: To sufficiently verify the effectiveness of H3DP, we
evaluate H3DP on 5 simulation benchmarks, encompassing a
total of 44 tasks. These tasks span a variety of manipulation

challenges, including articulated object manipulation [2, 36, 59],
deformable object manipulation [14], bimanual manipula-
tion [31], and dexterous manipulation [2, 36]. The details
of the expert demonstrations can be found in Appendix C. To
comprehensively assess the performance of H3DP, we compare
it against three baselines: Diffusion Policy [6], one of the most
widely used visuomotor policy learning algorithms; Diffusion
Policy (w/ depth), which extends Diffusion Policy to incorporate
RGB-D input to bridge the information gap; and DP3 [62], an
enhanced version of Diffusion Policy that leverages an efficient
encoder for point cloud input.

Evaluation metric: Each experiment is run with three
different seeds to mitigate performance variance. For each
seed, we evaluate 20 episodes every 200 training epoches. In
simpler MetaWorld, Adroit and DexArt tasks, we compute the
average of the highest five success rates as its success rate,
while in other environments, only the hightest success rate is
recorded.

2) Simulation performance: As shown in Table I, the
simulation experiment results exhibit that H3DP outperforms or
achieves comparable performance among the whole simulation
benchmarks. Our method outperforms DP3 by a relative average
margin of +27.5%. Notably, DP3 requires manual segmenta-
tion of the point cloud to remove background and task-irrelevant
elements. This process introduces additional human effort
and renders performance susceptible to segmentation quality.
Relevant experimental results are provided in Appendix E6. In



TABLE I: Simulation task results. Across 5 simulation benchmarks with various difficult levels, H3DP obtains +27.5% relative performance
gains on average over 44 tasks.

Method \ Tasks MetaWorld MetaWorld MetaWorld ManiSkill ManiSkill Adroit DexArt RoboTwin Average
(Medium 11) (Hard 5) (Hard++ 5) (Deformable 4) (Rigid 4) (3) (4) (8) (44)

H3DP 98.3 87.8 95.8 59.3 65.3 87.3 53.3 57.4 75.6±18.6

DP 78.2 52.6 58.0 22.3 27.5 79.0 44.3 22.8 48.1±23.1

DP (w/ depth) 77.7 57.2 71.2 44.5 40.8 76.0 42.0 12.6 52.8±22.2

DP3 89.1 52.6 88.4 26.5 33.5 84.0 54.8 45.9 59.3±24.9
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Fig. 3: Action DFT results. As the denoising process progresses, the
Gaussian noise (t = τ4) is gradually transformed into the predicted
action (t = τ0). Timesteps τi is arranged in descending order of noise
levels. The results reveal a consistent frequency evolution pattern:
low-frequency components predominantly emerge during the early
stages of denoising, whereas high-frequency features are progressively
introduced in the latter phases of the process.

contrast, benefiting from our design, H3DP obtains superior
performance using only raw RGB-D input, without the need for
segmentation and human effort. Furthermore, on the Adroit and
DexArt benchmark, while DP3 leverages multi-view cameras
to restore the complete point clouds, H3DP attains comparable
performance using only one single-camera RGB-D image.
The whole simulation results in each task can be found in
Appendix E1.

3) Spectral analysis of actions: To gain a more comprehen-
sive understanding of the action generation, we apply Discrete
Fourier Transform (DFT) to examine how the frequency com-
position of actions evolves throughout the denoising process.
Specifically, we conduct the analysis across 4 benchmarks and
visualize the spectral characteristics of action chunks during
generation. As shown in Figure 3, the results consistently
indicate that the denoising process begins with the synthesis of
low-frequency features, which are incrementally complemented
by higher-frequency features in later stages. This observation
not only shows that action, akin to image, exhibits an intrinsic
inductive bias in the diffusion process, but also elucidates the
action generation mechanism of H3DP, wherein actions are
hierarchically composed to captured features across varying
levels of granularity.

B. Real-world Experiments

In terms of real-world experiments, we choose Galaxea R1
robot as our platform. We design four diverse challenging real-
world tasks to evaluate the effectiveness of our method:
Clean Fridge (CF): In a cluttered refrigerator environment,
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Fig. 4: Success rate in real-world. Dark-colored bars correspond
to H3DP, whereas the light-colored bars correspond to DP. H3DP
outperforms DP in all 4 challenging real-world tasks.

the robot is required to relocate a transparent bottle from the
upper compartment to the lower one. The bottle is randomized
within a 30 cm × 5 cm region on both the upper and lower
shelves of the refrigerator.
Pour Juice (PJ): This is a long-horizon task. The robot is
required to place a cup in front of a water dispenser, scoop
a spoonful of juice powder, then fill the cup with water, and
finally put a straw in the cup. The cup is placed within a 7 cm
× 7 cm area, and both the color of the juice powder and the
position of the water dispenser are subject to variation across
trials.
Place Bottle (PB): The robot must place a bottle, initially
located at a random position, onto a designated coaster. The
bottle is placed within a 15 cm × 15 cm region, while the
coaster is positioned within an around 25 cm × 25 cm area.
Sweep Trash (ST): This long-horizon task entails picking up
a broom, sweeping scattered debris on a table into a dustpan,
and subsequently emptying the contents into a trash bin. The
trash is randomly distributed across the entire table surface,
approximately within a 40 cm × 40 cm area.

ZED camera Meta Quest3Galaxea R1

Fig. 5: Experiment Setup.

1) Experiment
Setup: We use the
ZED camera to
acquire the depth
image with 60Hz
running frequency.
The demonstrations
are collected by Meta
Quest3. Regarding
the two long-horizon tasks, both the baseline and our method
incorporate the pre-trained ResNet18 [16] encoders for RGB
modality to enhance the policy’s perceptual capabilities
in real-world environments. Each task is evaluated at 20
randomly sampled positions within the defined randomization
range for each method. We record the success trials and
calculate the corresponding success rate. In addition, during



policy deployment, we adopt an asynchronous design to obtain
an approximately 15Hz inference speed. We also introduce
temporal ensembling and p-masking to improve temporal
consistency and alleviate overfitting to the proprioception state.
More setup details can be found in Appendix D.

2) Experiment Results: Spatial generalization: As shown
in Figure 4, H3DP significantly outperforms the baseline across
all four real-world tasks, achieving an average improvement of
+32.3%. It should be noted that in CF and PJ tasks, the policy
is required to not only identify target objects in cluttered visual
environments but also perform long-horizon reasoning to ac-
complish the tasks. While DP struggles to complete either task,
H3DP achieves substantial improvements, outperforming DP by
+38% and +41% respectively. Therefore, H3DP demonstrates
superior perceptual and decision-making capabilities compared
to alternative algorithms. Meanwhile, it should be noted that in
terms of the point cloud based method DP3, it requires precise
segmentation and high-fidelity depth sensing, resulting in it
being less effective in handling our four cluttered real-world
scenes that we designed. Comparative experimental results for
DP3 are presented in Appendix E8.

Instance generalization: Regarding instance generalization,
we evaluate the model on two real-world tasks by varying the
size and shape of bottles or trash items. As shown in Table II,
after replacing the objects with variants of differing sizes
and shapes, H3DP maintains strong generalization capabilities
attributable to its ability to hierarchically model features at
multiple levels of granularity, and consistently outperforms
baseline approaches across all settings.

TABLE II: Instance generalization results. H3DP achieves +15.4%
performance gain.

Method \ Tasks Place Bottle Sweep Trash Average
coke bottle sprite can 8 cm3 64 cm3 216 cm3

H3DP 67 49 53 75 86 67 66.2
Diffusion Policy 45 36 40 52 72 60 50.8

C. Ablation Study

In this section, we ablate each key component of our
framework and conduct experiments on three benchmarks to
further exhibit the effectiveness of H3DP. The entire results in
each benchmark can be found in Appendix E2.

Each hierarchical design. We ablate the three hierarchical
components introduced in our framework and compare them
against the baseline Diffusion Policy with RGB-D input. As
shown in Table III, each hierarchical component independently
contributes to performance improvement, consistently outper-
forming the DP (w/ depth). Furthermore, Table III also demon-
strates that the integration of all three hierarchical designs leads
to a substantial enhancement in overall performance.

The choice of N in depth-aware layering. For the depth-
aware layering component, we investigate whether the policy’s
performance is sensitive to the choice of the number of layers N .
As presented in Table IV, the trained policy achieves optimal
and comparable performance when N is set to 3 or 4, a trend
consistently observed across all evaluated benchmarks. When N

TABLE III: Ablation on hierarchical features.

Methods \ Benchmarks MW MS RT Average

H3DP 65.7 68.0 45.0 59.6
w/o depth layering 55.0 52.5 32.0 46.5
w/o hierarchical action 57.0 50.0 40.0 49.0
w/o multi-scale representation 53.7 52.5 40.0 48.7
DP (w/ depth) 46.7 47.5 32.0 42.1

becomes excessively large, the image is over-partitioned, thus
reducing the representation capacity of the policy. Nevertheless,
even in such cases, the performance remains slightly better than
the non-layered baseline. These findings highlight the critical
role of depth-aware layering in enhancing policy effectiveness.

TABLE IV: Ablation on number of layers N .

Methods \ Benchmarks MW MS RT Average

H3DP (N = 1) 55.0 52.5 32.0 46.5
H3DP (N = 2) 55.7 60.0 35.0 50.2
H3DP (N = 3) 65.7 68.0 45.0 59.6
H3DP (N = 4) 67.0 61.5 50.0 59.5
H3DP (N = 5) 58.7 55.0 50.0 54.6
H3DP (N = 6) 56.0 51.0 40.0 49.0

V. CONCLUSION

In this paper, we introduce H3DP, an efficient generalizable
visuomotor policy learning framework that can obtain superior
performance in a wide range of simulations and challenging
real-world tasks. Extensive empirical evidence suggests that
establishing a more cohesive integration between visual feature
representations and the action generation process can enhance
the generalization capacity and learning efficiency of our
learned policies. The proposed three hierarchical designs not
only facilitate the effective fusion of RGB and depth modalities,
but also strengthen the correspondence between visual features
and the generated actions at different granularity levels. In the
future, we expect to extend the applicability of H3DP to more
intricate and fine-grained dexterous real-world tasks.

VI. LIMITATIONS

Although H3DP has demonstrated effectiveness in a variety
of tasks, there exist several limitations. First, despite our use
of asynchronous execution to improve inference speed in real-
world settings, the overall inference time of diffusion-based
models remains relatively slow. We could explore distilling
the policy into a consistency model, to enhance real-time
performance. Second, the limited depth quality of the ZED
camera may hinder the policy’s full potential in real-world
deployment; employing higher-fidelity depth sensors could
further boost the effectiveness of H3DP in practical scenarios.
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APPENDIX

A. Hyperparameters

To effectively address the varying levels of difficulty and distinct properties inherent to different benchmarks, we adapt our
hyperparameter settings for each specific dataset. The chosen configurations, detailed in Table V, VI, VII, VIII, are selected
based on previous works [6, 62, 67, 31].

TABLE V: Hyperparameters used for MetaWorld, DexArt.

Hyperparameter Value

Observation Horizon (To) 2
Action Horizon (Ta) 2
Prediction Action Horizon (Tp) 4
Optimizer AdamW [21]
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
Training Timesteps (T ) 50
Inference Timesteps 20
Prediction Type ϵ-prediction
Image Resolution 128 × 128
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,1),(3,3),(5,5),(7,7)}
Stage Boundiaries ({τk/T}Kk=0) {0,0.4,0.6,0.8,1.0}

TABLE VI: Hyperparameters used for Adroit.

Hyperparameter Value

Observation Horizon (To) 2
Action Horizon (Ta) 2
Prediction Action Horizon (Tp) 4
Optimizer AdamW
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
Training Timesteps (T ) 50
Inference Timesteps 20
Prediction Type ϵ-prediction
Image Resolution 84 × 84
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,1),(3,3),(5,5),(6,6)}
Stage Boundiaries ({τk/T}Kk=0) {0,0.4,0.6,0.8,1.0}

TABLE VII: Hyperparameters used for ManiSkill.

Hyperparameter Value

Observation Horizon (To) 2
Action Horizon (Ta) 8
Prediction Action Horizon (Tp) 16
Optimizer AdamW
Betas (β1, β2) [0.9, 0.95]
Learning Rate 1.0e-4
Weight Decay 1.0e-4
Learning Rate Scheduler One Cycle LR [46]
Training Timesteps (T ) 100
Inference Timesteps 100
Prediction Type ϵ-prediction
Image Resolution 128 × 128
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,1),(3,3),(5,5),(7,7)}
Stage Boundaries ({τk}Kk=0/T ) {0,0.4,0.6,0.8,1.0}



TABLE VIII: Hyperparameters used for RoboTwin.

Hyperparameter Value

Observation Horizon (To) 3
Action Horizon (Ta) 2
Prediction Action Horizon (Tp) 8
Optimizer AdamW
Betas (β1, β2) [0.95, 0.999]
Learning Rate 1.0e-4
Weight Decay 1.0e-6
Learning Rate Scheduler Cosine
Training Timesteps (T ) 100
Inference Timesteps 100
Prediction Type ϵ-prediction
Image Resolution 180 × 320
Scale Number (K) 4
Multi-Scale Representation Resolutions ({(hk, wk)}Kk=1) {(1,3),(3,5),(5,7),(5,9)}
Stage Boundaries ({τk}Kk=0/T ) {0,0.4,0.6,0.8,1.0}

In addition to the hyperparameters reported in the table, the choice of the number of layers N demonstrates great importance,
as shown in Table IV. Empirically, we choose N = 4 in Adroit, MetaWorld Hard and Hard++, and N = 3 in other benchmarks.

The noise scheduler for diffusion process is determined by αt, defined using function f(t)

αt =
f(t)

f(0)
, where f(t) = cos2

(
π

2

t/T + s

1 + s

)
. (7)

Here, T is the total number of diffusion timesteps and s is an offset parameter.
For the reverse process, we employ different formulations depending on the environment. In MetaWorld, Adroit and DexArt,

we follow the DDIM [47] approach, formulating the reverse process as an ODE, which corresponds to setting

σt = 0 (8)

for all t. In ManiSkill and RoboTwin, we follow the design of DDPM [17] and formulate the reverse process as a Variance
Preserving (VP) SDE [49]. In this case, for all t,

σt =

√
1− αt−1

1− αt

√
1− αt

αt−1
. (9)

Furthermore, consider the weighting term γt in Equation 6. Since the choice of γt does not affect the optimal denoising
network ϵθ∗ , we set

γt = 1 (10)

for all t.

B. Method Details

This section outlines the implementation details of our multi-scale encoding. The encoder Em for each depth layer m adopts
the architecture from VQGAN [9], ensuring strong representational capacity while preserving spatial information. We use
interpolate to denote a differentiable resizing operation (e.g. bilinear or nearest-neighbor interpolation), which is crucial for
enabling gradient flow during training. The function Q represents the quantization process detailed in Equation 2. Finally, after
interpolating a feature map fm,k to the highest resolution, we apply a lightweight convolutional network ϕm,k designed to help
restore fine details from the potentially lower-resolution source features.

The pseudocode for this process is outlined in Algorithm 1.



Algorithm 1: Multi-scale Encoding

1 Inputs: raw image I
2 Hyperparameters: depth layer number N , scale number K, resolutions {(hk, wk)}Kk=1

3 Partition image I into N + 1 images {Im}Nm=0 according to Equation 1
4 for m = 0, . . . , N − 1 do
5 fm ← Em(Im) ∈ RhK×wK×C

6 for k = 1, . . . ,K do
7 fm,k ← interpolate(fm, hk, wk) ∈ Rhk×wk×C

8 fm,k ← Q(fm,k)
9 fm,k ← ϕm,k(interpolate(fm,k, hK , wK)) ∈ RhK×wK×C

10 f̂m,k ←
∑

k′≤k fm,k′

11 fm ← fm − fm,k

12 Return: multi-scale features F = {f̂k = {f̂m,k}N−1
m=0}Kk=1

All trainable parameters, including the visual encoders {Em}N−1
m=0, the codebooks {Zm}N−1

m=0, the CNN parameters
{{ϕm,k}N−1

m=0}Kk=1, and the denoising network ϵθ, are trained jointly in an end-to-end manner. The optimization minimizes the
combined objective function L, defined as a weighted sum of consistency loss (Equation 3) and the diffusion loss (Equation 6):

L = Ldiffusion + αLconsistency, (11)

where α is a hyperparameter balancing the two loss terms.

C. Expert Demonstrations

Regarding the MetaWorld [59] and the RoboTwin [31] benchmarks, we utilize scripted policies to generate expert
demonstrations. In the case of ManiSkill [14] tasks, we employ the officially provided demonstrations. Trajectories for
other simulation benchmarks are collected with agents trained by RL algorithms [62, 43, 54]. The expert policies are evaluated
over 200 episodes, and their success rates are detailed in Table XX.

Given the varying difficulty levels across benchmarks, we provide a different number of demonstrations for each. Specifically,
we provide 50 trajectories per task for MetaWorld, Adroit, and RoboTwin. For DexArt, we follow the setup in [62] and provide
100 trajectories per task. For ManiSkill, we use all official demonstrations: 1000 for rigid tasks and 200 for deformable tasks.

In real-world experiments, we collect demonstrations of varying quantity, depending on the complexity and horizon length of
the tasks. For short-horizon tasks, the number of collected trajectories is relatively limited — 100 for Clean Fridge and 200 for
Place Bottle. In contrast, long-horizon tasks demand more comprehensive data coverage. We collect more demonstrations: 270
for Pour Juice and 500 for Sweep Trash. These demonstrations play a crucial role in guiding the training process, especially in
scenarios where exploration is challenging or unsafe.

D. Real-world Training Details

As mentioned in [13], DP-based methods often suffer from low inference speed, which can cause the inference process
to stall. Prior approaches, including DP3 [62], attempt to address this by increasing action horizon (e.g. Ta = 4 or Ta = 8)
or reducing the number of model parameters (e.g. Simple DP3). However, these strategies often compromise manipulation
accuracy and dexterity. A further complication is that increasing Ta widens the temporal gap between consecutive inference
steps, leading to greater discrepancies in observed information, and consequently, divergence in predicted actions. This often
results in noticeable jitter and discontinuities in manipulation.

In general, DP-based methods are hindered by low inference speed, temporal inconsistency and overfitting to proprioceptive
information. To address these challenges and improve real-world performance, we employ several empirical techniques.

TABLE IX: Comparison of real-world inference speeds for different methods. The
asynchronous version of our method demonstrates a significant speed-up by decoupling inference
from action execution.

Method DP DP3 H3DP H3DP (asynchronous)

Inference Speed (FPS) 12.4 12.7 12.1 24.2

1) Higher Inference Speed: To mit-
igate slow inference rooted in DP, we
adopt an asynchronous design, achiev-
ing a final inference frequency of 10-15
Hz. Instead of waiting for the execution
of all predicted actions before initiating
the next inference cycle, our method
performs inference concurrently with
action execution. The predicted action
is stored in a queue to be executed at a fixed inference speed (10-15 Hz in practice, 12 Hz as average).

The inference speeds achieved in real-world scenarios are presented in Table IX. H3DP (asynchronous) demonstrates a
superior inference speed compared to standard DP [6] and DP3 [62], as well as our synchronous H3DP implementation. In



addition to this speed advantage, H3DP features a shorter action sequence length (Ta = 2), which contributes to more dexterous
manipulation capabilities.

2) Temporal Consistency: Having adopted the asynchronous design, we have obtained action sequences with overlapping
time intervals. To ensure temporal smoothness and reduce discontinuities, we incorporate temporal ensembling mechanism
from ACT [65]. As in ACT, H3DP performs a weighted average of actions with the same timestep across multiple overlapping
sequences. This ensembling mitigates the gap between actions inferred from slightly different observations and effectively
reduces jitter.

3) Alleviate Overfitting: Similar to other real-world robotic systems, H3DP is susceptible to overfitting on proprioceptive
inputs, often neglecting the RGB-D information. This is evidenced by that the model generates similar actions regardless
of variations in object positions. We hypothesize that this occurs because the simple, low-parameter MLP used to encode
proprioception is easier to optimize than the more complex CNN used for RGB-D input, leading to reliance on the former.

To mitigate this, we introduce a p-masking strategy during training. This mechanism stochastically masks all proprioceptive
inputs with probability p, which decays linearly over the training process. Specifically, for training timestep t in a total horizon
T , p(t) = 1− t/T . This schedule encourages the model to rely more on RGB-D features early in training, helping it avoid
early-stage overfitting and develop stronger visual grounding.

E. Additional Experiment Results

1) Simulation Results for Each Task: We present the simulation results for each task in Table XIX, which serves as a
supplement to Table I. For each experiment, we report the average success rate over three different random seeds. The final
average result is obtained by averaging across all benchmarks.

We also provide the training progress of 4 algorithms on 12 various tasks across 3 different benchmarks in Figure 6. The
selected tasks span a range of difficulties and are included without cherry picking to provide an unbiased view of each algorithm.

2) The Whole Results of Ablation Study: We present the entire results of our ablation study on each hierarchical design and
number of layers N in Table X and Table XI, as a supplement to Table III and Table IV. For each experiment, the success rate
is reported by averaging over 3 different random seeds. The final average result is obtained by averaging across benchmarks.

TABLE X: Whole results of ablation study on hierarchical features.

Method \ Tasks MetaWorld ManiSkill RoboTwin AverageSoccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP 85 75 37 98 38 45 59.6
w/o depth layering 59 72 34 78 27 32 46.5
w/o hierarchical action 64 67 40 82 18 40 49.0
w/o multi-scale representation 55 72 34 73 32 40 48.7
DP (w/ depth) 37 71 32 72 23 32 42.1

TABLE XI: Whole results of ablation study on number of layers N .

Method \ Tasks MetaWorld ManiSkill RoboTwin AverageSoccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP (N = 1) 59 72 34 78 27 32 46.5
H3DP (N = 2) 64 70 33 85 35 35 50.2
H3DP (N = 3) 85 75 37 98 38 45 59.6
H3DP (N = 4) 78 83 40 90 33 50 59.5
H3DP (N = 5) 62 75 39 87 23 50 54.6
H3DP (N = 6) 61 73 34 77 25 40 49.0

3) Comparison with a GMM-based Layering Variant: To highlight the advantages of depth-aware layering, we conduct a
comparison against a variant where this module is substituted with a classical foreground-background segmentation method,
Gaussian Mixture Models (GMM) [39], named H3DP-GMM. As shown in Table XII, H3DP outperforms H3DP-GMM in all
benchmarks. Notably, H3DP-GMM yields results comparable to a simple single-layer (N = 1) approach, further emphasizing
the rationality and effectiveness of our proposed depth-aware layering strategy.

4) Comparison with More Baselines: Except diffusion-based algorithms, we also compare H3DP with the recent state-of-the-
art method CARP [13], which uses multi-scale action VQ-VAE to build hierarchical action structures. Table XIII shows that
H3DP outperforms CARP with an average improvement of 18.9%, indicating the importance of adopting hierarchical designs
throughout visual features and action generation.



TABLE XII: Comparison with GMM-based layering variant. H3DP with depth-aware layering achieves superior performance compared to
using GMM for layering.

Method \ Tasks MetaWorld ManiSkill RoboTwin AverageSoccer Stick Pull Pick Out of Hole Fill Excavate Tool Adjust

H3DP 85 83 40 98 38 45 64.8
H3DP-GMM 45 67 32 75 27 37 47.2

H3DP (N = 1) 59 72 34 78 27 32 50.3

TABLE XIII: Comparison with CARP. H3DP outperforms CARP with an average improvement of 18.9%.

Method \ Tasks MetaWorld AverageBox Close Soccer Stick Pull Pick Out of Hole Peg Insert Side Hammer Sweep

H3DP 98 85 83 40 98 100 100 86.3
CARP 82 53 71 15 69 82 100 67.4

DP 83 43 64 13 62 64 96 60.7

5) Comparison with DP with Pre-trained Visual Encoder: Prior work suggests that pre-trained visual representation may
enhance spatial generalization of policy [58]. Hence, we investigate the impact of integrating a pre-trained visual encoder with
the original DP. We specifically replace the standard ResNet encoder in DP with DINOv2 [32] model.

This variant, named DP-DINOv2, is evaluated on randomly selected tasks from the MetaWorld benchmark. The comparative
results are presented in Table XIV. Although DP-DINOv2 shows a marginal improvement on some tasks compared to the
original DP baseline, this comes with drawbacks, including a longer training time, inference latency and larger number of
parameters(∼21M for DINOv2 with ViT-S) due to the DINOv2 architecture.

In contrast, H3DP utilizes an efficient visual encoder with less than 0.7M parameters, which achieves strong performance
improvements over the original DP without incurring the aforementioned overheads.

TABLE XIV: Comparison with DP with pre-trained visual encoder. While DP-DINOv2 yields small improvement after paying additional
cost, H3DP demonstrates superior performance.

Method \ Tasks MetaWorld AverageHand Insert Pick Out of Hole Disassemble Stick Pull Soccer Sweep Into

H3DP 100 40 96 83 85 100 84.0
DP 73 13 81 64 43 74 58.0

DP-DINOv2 91 24 77 72 41 78 63.8

6) Importance of Segmentation in DP3: As highlighted in Section IV-A2, DP3 relies on manual segmentation of point cloud
for optimal performance. To demonstrate this dependency, we evaluate DP3’s performance under two distinct segmentation
conditions using randomly selected tasks from the MetaWorld benchmark.

We compare the following two scenarios: DP3 with ideal segmentation, which utilizes clean segmented point clouds containing
only the robot and task-relevant objects, as implemented in the original DP3 algorithm; DP3 without ideal segmentation, which
utilizes point clouds that are intentionally processed to include desk surface upon which objects rest, while other background
elements are still removed. This configuration simulates common real-world scenarios where simple or automated segmentation
rules might fail to perfectly isolate the task-relevant objects.

As shown in Table XV, DP3’s performance degrades substantially when operating on point clouds without ideal segmentation.
This result confirms that DP3 is highly sensitive to the quality of the input point cloud segmentation.

TABLE XV: Comparision of DP3 under different segmentation qualities. We compare DP3 success rates on selected tasks when provided
with different segmentation qualities, highlighting significant performance degradation.

Method \ Tasks MetaWorld AveragePush Shelf Place Stick Pull Soccer Bin Picking Pick Place Wall

DP3 96 86 61 57 100 97 82.8
DP3 (w/o ideal segmentation) 89 26 48 29 50 84 54.3

In contrast, H3DP operates directly on raw image without requiring such pre-processing, thereby avoiding such failure mode
and the associated need for careful, potentially manual, segmentation tuning, especially common in real-world scenarios.

7) H3DP in Tasks with Significant Depth Variations: As introduced in Section III-A, our depth-aware layering mechanism
discretizes the depth map into distinct layers. This layering offers a crucial advantage in scenarios with significant depth



variations by providing a structured representation that preserves visual detail while emphasizing foreground-background
separation. We will elaborate on this benefit and provide supporting comparative analysis here.

We conduct further experiments on tasks involving complex spatial arrangements, such as reaching for an object from closer
to further or manipulating items in a cluttered scene, demanding a fine-grained understanding of relative object depth. Although
raw RGB-D data contains this information implicitly, models may struggle to effectively utilize it, potentially treating the
depth channel similarly to color channels or failing to prioritize significant depth discontinuities. Point cloud representations,
inherently capturing 3D structures, often perform well in such scenarios as they directly encode geometric relationships.

Our depth-aware layering mechanism explicitly addresses this challenge for RGB-D inputs. By assigning pixels to discrete
layers based on their depth values, we impose a structure that forces the model to differentiate between elements located at
varying distances to camera. This discretization acts as an inductive bias, guiding the model to attend more strongly to the
geometric layout and relative positioning of objects along the depth axis.

To empirically support our hypothesis, we conduct an ablation study focusing on tasks exhibiting significant depth variations.
We compare the performance of three distinct approaches: DP3, DP (w/ depth) and H3DP (only with depth-aware layering, i.e.,
without hierarchical action and multi-scale representation).

As seen in Table XVI, our observations reveal a consistent pattern: in tasks involving significant depth variations, point
cloud–based policy initially demonstrated superior performance compared to standard RGB-D processing, represented by DP (w/
depth). However, upon integrating the depth-aware layering mechanism, H3DP consistently outperforms the baseline on these
tasks, which strongly supports our claim.

TABLE XVI: Performance comparison demonstrating the effectiveness of depth-aware layering. Tasks with significant depth variations
show great improvement only with depth layering compared to DP (w/ depth), surpassing the point cloud baseline (DP3).

Method \ Tasks MetaWorld AveragePush Shelf Place Disassemble Soccer Pick Place Wall Peg Insert Side

H3DP (only w/ depth layering) 100 95 98 55 100 86 89.0
DP (w/ depth) 79 29 76 37 80 53 59.0

DP3 96 86 98 57 97 92 87.7

8) Comparison with DP3 in Real-world Experiments: DP3 [62] is a renowned baseline succeeding DP [6] in imitation
learning and robotic manipulation, achieving state-of-the-art results in multiple simulation environments. However, DP3 has
notable limitations. In particular, it relies heavily on high-quality point clouds, typically requiring precision sensors such as the
RealSense L515 to function effectively.

TABLE XVII: Comparison of H3DP and DP3 in real-world
experiments. We make comparison in 2 short-horizon real-world tasks
and both use LFS encoders. H3DP achieves +29.0% performance gain.

Method \ Tasks CF PB Average

H3DP 51 52 51.5
DP3 12 33 22.5

In our setup, the head-mounted camera is a ZED, which
produces relatively low-quality visual inputs. This hinders
the direct application of DP3 in our experimental setting. To
ensure a fair comparison, we evaluate both H3DP and DP3
on two short-horizon real-world tasks both using the learning-
from-scratch (LFS) encoder. The results are summarized in
Table XVII.

It is evident that DP3 underperforms compared to H3DP
in both tasks, highlighting H3DP’s ability to robustly extract
meaningful features from RGB-D inputs, even when the
quality of visual input is suboptimal. Furthermore, we empirically find that employing spatially sparse convolution provides
better performance than the DP3-style encoder, suggesting a promising direction for improving point cloud encoding in
low-fidelity settings.

TABLE XVIII: Comparison of inference speeds for DP, DP3 and H3DP
in simulation tasks. The result indicates that additional operations introduced
in H3DP are lightweight compared to the diffusion process.

Method DP DP3 H3DP

Inference Speed (FPS) 11.1 12.2 12.0

9) Inference Speed: As shown in Table XVIII,
we evaluate the inference speed of different methods
within simulated environments. The results indicate
that the primary bottleneck of the inference speed of
H3DP lies in the diffusion process itself, whereas the
additional operations introduced for processing visual
inputs and managing multi-scale representations incur
only minimal computational overhead. A corresponding
analysis of inference speed in real-world scenarios is
available in Appendix D1.



TABLE XIX: Success rates on 44 simulation tasks. Results of four different methods for each task are provided in this table. The summary
across domains is shown in Table I.

Method \ Tasks
MetaWorld [59] (Medium)

Basketball Bin Picking Box Close Coffee Pull Coffee Push Hammer Soccer Push Wall

H3DP 100 100 98 100 100 100 85 100

DP 100 96 83 82 84 64 43 76
DP (w/ depth) 100 98 77 79 79 64 37 70

DP3 100 100 78 100 100 97 57 95

Method \ Tasks
MetaWorld (Medium) MetaWorld (Hard)

Peg Insert Side Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place Push

H3DP 98 100 100 100 100 40 99 100

DP 62 96 74 100 73 13 0 77
DP (w/ depth) 53 98 100 100 75 32 0 79

DP3 92 100 61 100 37 30 0 96

Method \ Tasks
MetaWorld (Hard++) DexArt [2]

Shelf Place Diassemble Stick Pull Stick Push Pick Place Wall Laptop Faucet Toilet Bucket

H3DP 100 96 83 100 100 81 34 70 28

DP 20 81 64 70 55 69 23 58 27
DP (w/ depth) 29 76 71 100 80 63 20 62 23

DP3 86 98 61 100 97 80 33 79 27

Method \ Tasks
Adroit [36] ManiSkill [14] (Rigid)

Hammer Door Pen Peg Insertion Side (Grasp) Peg Insertion Side (Align) Pick Cube Turn Faucet

H3DP 100 79 83 88 15 85 73

DP 95 69 73 78 7 17 8
DP (w/ depth) 100 66 62 93 12 33 23

DP3 100 71 81 63 12 10 48

Method \ Tasks
ManiSkill (Deformable) RoboTwin [31]

Excavate Hang Pour Fill Apple Cabinet Storage Dual Bottles Pick (Easy) Dual Bottles Pick (Hard)

H3DP 38 93 8 98 98 48 53

DP 2 52 0 36 73 53 28
DP (w/ depth) 23 78 7 72 2 33 25

DP3 15 80 0 12 55 55 42

Method \ Tasks
RoboTwin Average

Block Handover Block Hammer Beat Diverse Bottles Pick Pick Apple Messy Tool Adjust

H3DP 70 85 25 35 45 75.6±18.6

DP 28 0 0 0 0 48.1±23.1

DP (w/ depth) 0 0 2 7 32 52.8±22.2

DP3 85 47 30 8 45 59.3±24.9



TABLE XX: Success rates of experts on 44 simulation tasks. We evaluate 200 episodes for each task. For ManiSkill tasks, the demonstrations
are provided officially, and we record the success rates as 100%. The final average result is obtained by averaging across all benchmarks.

Method \ Tasks
MetaWorld [59] (Medium)

Basketball Bin Picking Box Close Coffee Pull Coffee Push Hammer Soccer Push Wall

Expert 100.0 97.0 90.0 100.0 100.0 100.0 90.5 100.0

Method \ Tasks
MetaWorld (Medium) MetaWorld (Hard)

Peg Insert Side Sweep Sweep Into Assembly Hand Insert Pick Out of Hole Pick Place Push

Expert 92.0 100.0 90.0 100.0 100.0 100.0 100.0 100.0

Method \ Tasks
MetaWorld (Hard++) DexArt [2]

Shelf Place Diassemble Stick Pull Stick Push Pick Place Wall Laptop Faucet Toilet Bucket

Expert 99.5 92.5 95.0 100.0 99.5 86.5 58.0 66.5 80.0

Method \ Tasks
Adroit [36] ManiSkill [14] (Rigid)

Hammer Door Pen Peg Insertion Side (Grasp) Peg Insertion Side (Align) Pick Cube Turn Faucet

Expert 99.0 100.0 97.0 100.0 100.0 100.0 100.0

Method \ Tasks
ManiSkill (Deformable) RoboTwin [31]

Excavate Hang Pour Fill Apple Cabinet Storage Dual Bottles Pick (Easy) Dual Bottles Pick (Hard)

Expert 100.0 100.0 100.0 100.0 96.0 97.0 55.5

Method \ Tasks
RoboTwin Average

Block Handover Block Hammer Beat Diverse Bottles Pick Pick Apple Messy Tool Adjust

Expert 98.0 97.0 72.0 88.5 86.5 93.9
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Fig. 6: Learning curves of the four methods on 12 randomly sampled diverse simulation tasks. In most tasks, H3DP demonstrates faster
convergence, higher final success rates, and lower variance compared to other three methods.
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