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Abstract—Robot manipulation, especially bimanual manipu-
lation, often requires setting up cameras on different robot
manipulators. Before robot manipulators can generate motion
or even build representations of their environments, the cameras
rigidly mounted to the robot need to be calibrated. Camera
calibration is a cumbersome process involving collecting a set
of images, with each capturing a pre-determined marker. In
this work, we introduce the Bi-Manual Joint Calibration and
Representation Framework (Bi-JCR). Bi-JCR enables dual robot
manipulators, each with cameras mounted, to circumvent taking
images of calibration markers. By leveraging 3D foundation
models for dense, marker-free multi-view correspondence, Bi-
JCR jointly estimates: (i) the extrinsic transformation from
each camera to its end-effector, (ii) the inter-arm relative poses
between manipulators, and (iii) a unified, scale-consistent 3D
representation of the shared workspace, all from the same
captured RGB image sets. The representation, jointly constructed
from images captured by cameras on both manipulators, lives
in a common coordinate frame and supports collision checking
and semantic segmentation to facilitate downstream bimanual
coordination tasks. We empirically evaluate the robustness of Bi-
JCR on a variety of tabletop environments, and demonstrate its
applicability on a variety of downstream tasks.

I. INTRODUCTION

Robot manipulators with wrist-mounted cameras generally

need to be meticulously calibrated offline to enable perceived

objects to be transformed into the robot’s coordinate frame.

This is done via a procedure known as hand-eye calibration,

where the manipulator is moved through a set of poses

and take images of a known calibration marker, such as a

checker board or AprilTag [1]. Traditional hand-eye calibration

methods focus on a single “eye-in-hand” camera and rely

on external markers to compute the rigid transform between

camera and end-effector. When extended to two independently

moving arms, these approaches must be repeated separately for

each arm, and then a secondary step is required to fuse the

two coordinate frames. In this work, we tackle the problem of

calibrating of dual manipulators with wrist-mounted cameras

without using any calibration markers. Here, we assume that

the poses of the cameras relative to the end-effectors, along

with the relative poses of the manipulator bases are unknown

and require estimation.

Here, we propose a framework called Bi-manual Joint

Representation and Calibration (Bi-JCR) that simultaneously

builds a representation of the environment and calibrates both

cameras for dual-manipulators with wrist-mounted cameras.

Bi-JCR uses the same set of images for both calibrating

the camera and constructing the environment representation,

thereby avoiding the need to calibrate offline with markers. Bi-

JCR leverages modern 3D foundation models to efficiently es-

1 Robotics Institute, Carnegie Mellon University, USA.
2 College of Connected Computing, Vanderbilt University, USA.

Fig. 1: We tackle a bi-manual setup, where the extrinsics of both
cameras and the relative poses of the robot bases to one another are
unknown. Bi-JCR solves to recover all three transformations.

timate an unscaled representation along with unscaled camera

poses, from a set of images captured by the dual manipulators.

Then, by considering the forward kinematics of each arm, we

formulate a joint scale recovery and dual calibration problem

which can subsequently be solved via gradient descent on a

manifold of transformation matrices. By optimizing across a

single calibration problem defined using images from both

arms, Bi-JCR simultaneously solves for each hand-eye trans-

form, aligns the two robot base frames, recovers a missing

scale factor, and directly yields the rigid transform between

the two camera sensors. This enables immediate fusion of

visual data across both viewpoints for bimanual manipulation,

without reliance on external markers or depth sensors.

We empirically evaluate Bi-JCR and demonstrate its ability

to accurately calibrate cameras on both manipulators, and

produce a dense and size-accurate representation of the en-

vironment that can be transformed into the workspace coor-

dinate frame. We leverage the representation into downstream

manipulation and to execute successful grasps and bi-manual

hand-overs. Concretely, our contributions include:

• The Bi-manual Joint Calibration and Representation (Bi-

JCR) method that leverages 3D foundation models to

build an environment representation built from wrist-

mounted cameras, while calibrating the cameras;

• The formulation of a novel optimization problem that

recovers camera transformations on both manipulators,

the relative pose between the manipulators, and a scale

factor to obtain metric scale from representation;

• Rigorous evaluation on real-world data, and the evalua-

tion of performance of downstream tasks in a real-world

bi-manual setup.
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Fig. 2: The transformations between each arm, along with their
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are all unknown and will be recovered via Bi-JCR.

II. RELATED WORK

Hand–Eye Calibration: Decades-old closed-form solvers

[2]–[4] remain the de facto standard because they are fast

and provably correct under marker-based conditions without

noise. Yet in modern labs, the very assumptions they rely

on,static checkerboards, perfectly segmented corners, indepen-

dent wrist motion, are routinely violated. Recent learning-

based variants regress the transform directly from images [5],

but demand gripper visibility or prior CAD models and often

degrade sharply outside the synthetic domain in which they

are trained. Other end-to-end policies learning-based methods

bypass calibration entirely, mapping pixels to torques [6], [7],

but at the cost of losing an explicit transform that downstream

planners and safety monitors still persist. Foundation model for

calibration is also explored in [8], but has not been extended

to the bi-manual setting. Bi-manual Hand-Eye Calibration:

Extending single manipulator hand-eye calibration to the bi-

manual setup is not trivial as it requires finding the pose of

the secondary manipulator in the primary manipulator’s frame.

Previously, some methods relied on the secondary manipulator

holding a checkerboard to perform bi-manual calibration [9],

[10]. Recently, a graph-based method also uses Apritags [1]

to calibrate multiple manipulators simultaneously [11]. Scene

Representation: Bimanual manipulation requires reasoning

about shared workspaces where two end-effectors and several

movable objects compete for space. Classical metric maps

such as occupation grids [12] and signed distance fields

[13], [14] give fast binary or distance queries for collision

checking, yet they discretize space and struggle to capture

fine contact geometry in small parts. Continuous alternatives

such as Gaussian process maps [15], kernel regressors [16],

[17], and neural implicit surfaces [18], offer subvoxel accu-

racy. Learning methods that directly consume point clouds

[19], [20] or integrate them into trajectory optimization [21]

completely bypass explicit mapping, placing the computational

burden on a powerful network. In vision, photorealistic NeRF-

style scene encoders [22]–[24] also produce rich geometry

and texture depending on Structure-from-Motion initialization

[25]. Foundation Models: Large-scale models trained in web

corpora, LLMs in NLP [26] and multimodal encoders in vision

[27] have recently been extended to 3-D perception [28]–

[31]. In robotics, these large pre-trained deep learning models

are referred to as ”foundation models”, gaining increasing

applications when used as black box functions for downstream

tasks [32], [33], although the output of these models requires

potential post-processing [34] before robotic tasks.

III. BI-MANUAL JOINT REPRESENTATION AND

CALIBRATION

The proposed Bi-manual Joint Representation and Cali-

bration (Bi-JCR) framework aims to solve the eye-to-hand

calibration problem for both manipulators, and in the process,

also recover the relative poses of the robot base. At the

same time, we can recover a dense 3D representation of the

tabletop scene, which can facilitate downstream manipulation.

This process is done without relying on any camera pose

information from external markers, such as checkerboards or

AprilTags [1].

A. Problem Setup:

We consider two manipulators, with one designated as the

primary manipulator and the other as the secondary, each

equipped with an end-effector mounted low-cost RGB camera.

A set of objects is arranged on a tabletop within their shared

workspace. The rigid transformations from each camera to its

corresponding end–effector are unknown and must be esti-

mated. To collect data, we command each manipulator through

a sequence of N distinct end–effector poses, capturing an

RGB image at each pose. We denote the primary manipulator’s

poses by {E1,1, E1,2, · · · , E1,N} with N corresponding RGB

images {I1,1, I1,2, · · · , I1,N}. We denote the N poses for

the secondary manipulator as {E2,1, E2,2, · · · , E2,N}, with

corresponding RGB images {I2,1, I2,2, · · · , I2,N}.

Using only these end–effector poses and captured images,

Bi-JCR will recover all of the following: The rigid transfor-

mation TE1

C1
from Camera 1 to the primary end–effector; The

rigid transformation TE2

C2
from Camera 2 to the secondary

end–effector; The scale factor λ aligning the foundation

model’s output frame with the real-world metric frame; The

pose of the secondary base frame b2 relative to the primary

base frame b1, denoted P b1
b2

; The transformation T b1
w from

the foundation model’s output frame w to the primary base

frame b1; A metric-scale 3D reconstruction of the scene in

the primary base frame b1.

The transformations between the dual manipulators, along

with their attached cameras, are illustrated in fig. 2. Here, we

observe that only the forward kinematics of the manipulators,

i.e. the transformation from the bases of the manipulators to

their end-effector, is known. The relative position of the two

manipulators are also initially unknown. Bi-JCR solves for all

of the unknown transformations.

B. 3D Foundation Models in the Pipeline

The two image sets can be fed into a 3D foundation model to

obtain a reconstruction of the scene in an arbitrary coordinate

frame and scale. We recover both of the relative camera poses

{P1,1, . . . , P1,N , P2,1, . . . , P2,N} (1)

along with corresponding point sets containing the reconstruc-

tion,

{X̂1,1, . . . , X̂1,N , X̂2,1, . . . , X̂2,N}, (2)



Fig. 3: 3D foundation model taking a set of RGB images, and output
3D point sets, camera poses and confidence maps.

where each point in a set corresponds to a pixel in the

associated input image, and confidence values for each pixel

can also be recovered. Pre-trained 3D foundation models are

often used to extract structure from images of indoor scenes

and building structures, and their application for table-top

scenes has been under-explored. Example outputs from the

model, DUSt3R [28], is given in fig. 3. Because the foundation

model recovers geometry only up to an unknown scale, both

the estimated camera poses and the aggregated point cloud are

not expressed in real-world metric units. To resolve this scale

ambiguity, we introduce a scale factor λ so that the pose of

camera i on manipulator m in the real-world (or base) frame

w becomes

Pw
m,i(λ) =

[

Rm,i λ tm,i

0 1

]

∈ SE(3), (3)

where we have i = 1, . . . , N and the index, m ∈ {1, 2}. In this

expression, Rm,i ∈ SO(3) denotes the rotation and tm,i ∈ R
3

is the translation estimated by the foundation model. Next,

defining the transform from the scaled foundation frame w to

each manipulator’s base frame bm as T bm
w , the camera poses

in the real-world base frames are

P bm
m,i(λ) = T bm

w Pw
m,i(λ), i = 1, . . . , N. (4)

C. Solving for Initial Calibration Solution

In Bi-JCR, we seek to simultaneously solve for λ, T b1
w , and

T b2
w in the process of solving bi-manual hand-eye calibration

for the two camera frame to base frame transformations TE1

C1

and TE2

C2
. During the sequence of manipulator motions, the

transformation between scaled camera poses and end effector

poses for manipulator m ∈ {1, 2} can be formulated as the

classical hand-eye calibration equations [2]:

Em,i
−1Em,i+1T

Em

Cm
= TEm

Cm
P bm
m,i

−1
(λ)P bm

m,i+1(λ) (5)

Now, we denote the transformation between poses by,

T
Em,i+1

Em,i
= Em,i

−1Em,i+1, (6)

T
Pw

m,i+1

Pw
m,i

(λ) = Pw
m,i

−1(λ)Pw
m,i+1(λ). (7)

Then, the hand-eye equations can be formulated as

T
Em,i+1

Em,i
TEm

Cm
= TEm

Cm
T

Pw
m,i+1

Pw
m,i

(λ). (8)

Here we observe that eq. (8) admits the AX = XB form of

the classical hand-eye calibration problem, with the right-hand

side dependent on the scale factor λ.

The first phase of Bi-JCR aims to obtain an initial solution

for the scale and desired transformation, which we denote as

λ′, TE1

C1

′
and TE2

C2

′
. Since the rotation component here are in

SO(3), we can first solve for the rotation components of the

transformations, which are invariant to the scale factor. This

can be achieved via linear algebra on the manifold of rotation

matrices by following [4]. We convert rotation components of

T
Em,i+1

Em,i
and T

Pw
m,i+1

Pw
m,i

into the log map of SO(3) to its lie

algebra (so(3)) where for some R ∈ SO(3). This gives,

ω =arccos(
Tr(R)− 1

2
), (9)

LogMap(R) :=
ω

2 sin(ω)





R3,2 −R2,3

R1,3 −R3,1

R2,1 −R1,2



 ∈ so(3). (10)

where, Tr(·) indicates the trace operator and the subscripts

indicate the elements’ indices in R. Then we can find best fit

rotational components via:

REm

Cm

′
= (M⊤

mMm)−
1
2M⊤

m, (11)

where Mm =

N−1
∑

i=1

LogMap(R
Em,i+1

Em,i
)⊗ LogMap(R

Pw
m,i+1

Pw
m,i

),

The ⊗ is the outer product, and the matrix inverse square root

can be computed efficiently via singular value decomposition.

Next, we solve the translation components along with

the scale factor jointly, by minimizing the residuals of the

similar scale recovery problem formulated in [8] for each arm,

assuming that the scale factor is consistent for the results of

each arm:

SRP: arg min
t
Em
Cm

′

,λ′

N−1
∑

i=1

||Qit
Em

Cm

′
− di(λ

′)||22, (12)

where Qi = I −R
Em,i+1

Em,i
, (13)

and di(λ
′) = t

Em,i+1

Em,i
−REm

Cm

′
(λ)t

Pw
m,i+1

Pw
m,i

. (14)

Equation (12) can be solved via least-squares, and we obtain

our solutions λ′, TE1

C1

′
and TE2

C2

′
, which can be further refined

via gradient-based optimisation.

D. Refine Calibration through Gradient-based Optimization

We further refine the solutions via gradient descent to

improve estimation. Here, we first rearrange Equation (8) into,

T
Em,i+1

Em,i
TEm

Cm
− TEm

Cm
T

Pw
m,i+1

Pw
m,i

= 0,

for i ∈ {1, · · · , N − 1},m ∈ {1, 2}. (15)

then we can solve the calibration problem by minimizing the

difference between transformation matrices T
Em,i+1

Em,i
TEm

Cm
and

TEm

Cm
T

Pw
m,i+1

Pw
m,i

. Specifically, we define a cost function as,

ℓ(λ, TE1

C1
, TE2

C2
) =

∑

m∈{1,2}

( 1

N − 1

N−1
∑

i=1

αDR(T
Em

Cm
)+(1−α)Dt(λ, T

Em

Cm
)
)

,

where DR(T
Em

Cm
)=arccos

(

tr(RE
m,i+1

m,i

⊤
RC

m,i+1

m,i )− 1
)

,

and Dt(λ, T
Em

Cm
)=

∥

∥te
m,i+1

m,i −tc
m,i+1

m,i

∥

∥

2
, (16)

where tr(·) is the trace operator. We can then minimize the

cost function via gradient descent [35] while constraining the

rotation to be on the SO(3) manifold. Here, we use the results

from the previous section as the initial solution. Furthermore,



to ensure that the rotational components in SO(3) during the

backpropagation process, we follow [36] and first pull each

rotation into the Lie algebra with the logarithm map, then

perform the gradient update on the resulting axis–angle vector

in R
3, and push it back onto the manifold via the exponential

map. With the solutions that minimize the cost function, we

can then obtain the world-to-base transformations T b1
w , and

T b2
w via

T bm
w = AVGSE3

i∈{1,··· ,N−1}

(

T
Em,i+1

Em,i
TEm

Cm
T

Pw
m,i+1

Pw
m,i

−1
)

(17)

where AVGSE3 is the average over a set of transformation

matrices on SE(3), by considering the average of rotation and

translation separately.

E. Obtaining Metric-Scale 3D Representation

Here, we seek to build a real-world metric scale 3D repre-

sentation of the environment under the primary manipulator’s

frame. Following Equation (3), we first scale camera poses by

λ to get {Pw
1,1, · · · , P

w
1,N} and {Pw

2,1, · · · , P
w
2,N}, we can then

get the calibrated metric scale camera poses by

P b1
m,i = T b1

w Pw
m,i, for m ∈ {1, 2}, i ∈ {1, · · · , N}. (18)

Next, we also want to use the point sets from each

arm, associated with each input image, {X̂1,1, · · · , X̂1,N}
and {X̂2,1, · · · , X̂2,N} and their associated confidence maps

{C1,1, · · · , C1,N} and {C2,1, · · · , C2,N} from the output of

the foundation model to recover a rich and high-quality

representation of the environment. We first use a confidence

threshold to filter out points below this threshold in each X̂m,i.

Then, we transform the points from the filtered point sets,

{xi}
Npc

i=1 , to get a point cloud in real-world metric scale and

primary manipulator’s base frame, {xb1
i }

Npc

i=1 through

{xb1
i = T b1

w (λxi), for i ∈ {1, · · · , Npc}}. (19)

Furthermore, the pose of the secondary manipulator’s base

in the primary manipulator’s base frame can be computed as

P b1
b2

= T b1
w T b2

w

−1
. (20)

The pose of the secondary manipulator’s base in the primary

manipulator’s base frame enables us to compute end-effector

poses for downstream tasks of both manipulators in a single

unified frame. This facilitates downstream processes, such

as object segmentation along with grasping generation, to

operate.

IV. EMPIRICAL EVALUATION

In this section, we rigorously evaluate our proposed

Bi-Manual Joint Calibration and Representation (Bi-JCR)

method. Our bi-manual setup consists of two AgileX Piper

6 degree-of-freedom manipulators, each with a low-cost USB

webcam mounted on the gripper. We seek to answer the

following questions: Can Bi-JCR produce correct hand-eye

calibration for both arms, even when the number of images

provided is low?Can Bi-JCR recover the scale accurately such

that our representation’s sizes match the physical world? Can

high-quality 3D environment representations, in the correct

coordinate frame, be built? Does Bi-JCR facilitate downstream

bi-manual manipulation tasks?

(a) Spoon (b) Tea Lid (c) Tape (d) Battery (e) Toolbox (f) Joystick

Fig. 4: Visualization of the objects we used for scale validation in
Table II. For each object, the top is their real-world appearances, and
the bottom is the reconstructions. The blue and yellow dots specify
the length measured for scale validation.

A. Eyes-to-Hands Calibration with Bi-JCR

Baselines: COLMAP-based pose estimation and Ray

Diffusion. To assess the calibration quality of Bi-JCR, we

compare against two alternatives. First, in the absence of

high-contrast markers such as checkerboards or AprilTags [1],

we use SfM via COLMAP [25] and apply the Park–Martin

algorithm [4] to compute eye-to-hand transformations for

each manipulator. Second, we evaluate Ray Diffusion [37],

a sparse-view diffusion model trained on large datasets [38]

that directly regresses camera poses.

Task and Metrics: We take images in three different

environments: a scene on a darker light condition with 9

items (scene A), two others of which are under brighter

light conditions with different sets of objects of 9 and 10

items respectively (scene B, scene C). Bi-JCR and the two

baseline methods are evaluated with an increasing number of

input images (4, 7 and 9 images per manipulator), then check

whether the calibration has converged correctly by considering

residual losses via Equation (15) with ground truth, obtained

via Apriltags [1], on the right-hand side. Lower residual values

indicate a higher degree of consistency.

Results: We tabulate our results in Table I. We observe

that COLMAP often results in diverged calibration, as images

where correspondence cannot be found are discarded. Whether

the calibration has converged and the number of images used,

from each manipulator, are also shown in Table I. Although

Ray Diffusion registered all images, it registered them in

an inconsistent way under this tabletop setup of cluttered,

partially visible objects, causing the calibration optimizer

to accumulate large errors. Our Bi-JCR method consistently

produce smaller residual under both lower and higher number

of views for both manipulators, showing remarkable image

efficiency. We also observe a residual loss reduce trend as the

number of images gradually increase, in comparison to the

residual loss fluctuation in the other two baseline methods,

which shows Bi-JCR’s reliable precision gain with increasing

number of views.

Here, we also visualize the aligned camera and end-effector

poses after calibration via Bi-JCR in Figure 6. The end-

effectors and outlined as U-shapes and cameras are represented

by cones. Both end-effector poses and camera poses are

transformed to the primary manipulator’s base frame using

the base to base transformation estimated by Bi-JCR. Primary

manipulator end-effector and eye-to-hand transformed camera

are colored in red, and the secondary manipulator’s are colored



Scene A Scene B Scene C

Images Per Manipulator 4 images 7 images 9 images 4 images 7 images 9 images 4 images 7 images 9 images

Converged ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Bi-JCR (Ours) Residual δR 0.0769 0.0724 0.0668 0.0740 0.0617 0.0569 0.0743 0.0634 0.0612
Residual δt 0.0461 0.0391 0.0378 0.0587 0.0351 0.0340 0.0424 0.0341 0.0373
No. of Poses (Left) 4 7 9 4 7 9 4 7 9
No. of Poses (Right) 4 7 9 4 7 9 4 7 9

Converged × × × ✓ ✓ ✓ × ✓ ✓

COLMAP [25] Residual δR NA NA NA 0.0865 0.0583 0.0584 NA 0.0591 0.0586
+ Calibration Residual δt NA NA NA 0.0317 0.0269 0.0274 NA 0.0277 0.0271

No. of Poses (Left) 0 4 2 4 7 9 0 7 9
No. of Poses (Right) 4 0 0 4 7 9 4 7 9

Ray Diffusion [37] Residual δR 0.4845 0.4288 0.7951 0.4948 0.3839 0.3634 0.4504 0.2610 0.2223
+ Calibration Residual δt 0.2118 0.1416 0.1309 0.2067 0.2051 0.1637 0.2125 0.1858 0.1760

No. of Poses (Left) 4 7 9 4 7 9 4 7 9
No. of Poses (Right) 4 7 9 4 7 9 4 7 9

TABLE I. Quantitative evaluation on Bi-JCR’s calibration residual error (δR and δt) against baseline methods. Lower residual indicates more
accurate calibrations.

Fig. 5: Qualitative evaluations of the recovered 3D reconstructions, including scene A, scene B, scene C from left to right. The reconstruction
of the scene is dense and geometrically accurate.

Object Spoon Tea Lid Tape Battery Toolbox Joystick

5 Images 4.90% 4.3% 2.73% 1.59% 10.90% 7.73%
8 Images 1.61% 0.26% 1.34% 1.10% 2.53% 2.98%

TABLE II. Percentage of error of object dimensions to compare the
size of real-world objects against reconstructed objects. Within 8
images per manipulator, the percentage errors of reconstructed sizes
are at most 2.98%, indicating accurate scale recovery.

Fig. 6: Qualitative evaluation of the camera calibration in the three
scenes. We observe that the cameras indicated as cones are aligned
with the end-effector poses, indicating accurate calibration. The end-
effector and camera poses of the left manipulator are colored in
shades of red and those of the right in blue.

in blue. As shown in Figure 6, Bi-JCR successfully recovers

eye-to-hand transformations that consistently align camera and

end-effector poses for both primary and secondary manipulator

across all scenes.

B. Accurate Metric Scale Recovery with Bi-JCR

Bi-JCR also reconstructs a 3D dense point cloud on a

metric scale of the real-world environment. Here, we evaluate

the accuracy of scale recovery by comparing the difference

between the side length of the real-world object and the

side length of the reconstructed objects with 5 and 8 images

collected from each manipulator, as shown in Figure 4. The

(a) Visualized in Pybullet. (b) Segmentated tabletop.

Fig. 7: Visualization of running segmentation algorithm in the real
world metric scale reconstructed 3D representation from Bi-JCR,
which allows various bi-manual downstream tasks such as joint
grasping and passing.

Fig. 8: Execution of the bi-manual joint grasping on heavier objects
in the scene. Background blurred for greater clarity.

error, computed by

errobj =
|sreconstructed − sreal world|

sreal world

, (21)

is reported in Table II. With only 8 images per manipulator,

Bi-JCR is able to reduce the error to a median of 1.48% and at

most 2.98%, which marks precise scale recovery giving real-

world metric scale.



Fig. 9: Top: Selected objects (wrench, spoon, balance meter and tape)
segmented; Bottom: Generated robot end-effector grasping poses for
manipulator hand-overs.

Fig. 10: Visualization of the base to base transformation recovery and
transformation recovery of foundation model output frame to primary
manipulator’s base frame, including scene A, B, C, and the real world
bi-manual bases setup (bottom right).

C. 3D Representation in Primary Manipulator’s Base Frame

Besides scale, the quality of the 3D representation built

by Bi-JCR is critical to downstream tasks. Here, we qualita-

tively assess the reconstructed 3D point cloud by visualizing

it against images taken on the real world environment in

Figure 5. We observe that Bi-JCR reconstructs the relative

position and orientation of objects in the environment cor-

rectly, and the shape of each object is highly preserved.

We further investigated whether representations can be accu-

rately transformed into the robot’s coordinate frame and the

placement of the secondary manipulator base in the primary

manipulator base frame. We inject the reconstruction, along

with manipulator poses, into the PyBullet Simulator [39]. As

shown in Figure 10, the relative pose of the two manipulators

highly resembles the relative pose of the two manipulators

in the real world, indicating the correct estimation of the

pose of the secondary manipulator in the base frame of the

primary manipulator. The table 3D reconstruction in sim-

ulation remains parallel to the bases of manipulators, and

object orientations and positions are visually correct relative

to the bases of manipulators, indicating high-quality both a 3D

reconstruction and its accurate transformation into the primary

manipulator’s frame.

D. Bi-JCR Enables Bi-manual Downstream Tasks

To assess both the relative-pose estimation between the

two manipulators’ bases and the fidelity of the reconstructed

3D scene, we conduct two real-world bimanual tasks: (1)

joint grasping of large objects and (2) passing of small

objects. We begin by running Bi-JCR to recover the base-

to-base transformation and reconstruct the 3D environment

in simulation (fig. 7a). Next, we apply the 3D point-cloud

segmentation algorithm from [40] to isolate each object on

the tabletop (fig. 7b).

Joint grasping: We first select the cluster corresponding

to the large objects: a toolbox, a controller, a battery pack

and a box, as illustrated fig. 8. A grasp pose for the primary

manipulator is computed in its own base frame using [41],

and likewise for the secondary manipulator. The secondary

grasp must then be transformed into its base frame. Finally,

both end-effector poses are executed via inverse kinematics

Fig. 11: We demonstrate passing of the objects: wrench, spoon,
balance meter, tape from top to bottom.

and joint control to perform the coordinated grasp.

Bimanual passing: We then focus on the small objects, a

wrench, a spoon, a balance meter and a tape, shown in Fig.

9. After choosing a target transfer location in the primary

manipulator’s base frame, we translate the segmented point

cloud to that location and generate synchronized “pass-in-air”

poses for both arms. Again, the secondary end-effector pose

is reprojected into its base frame. The primary manipulator

loads the object onto its gripper and then successfully hands

it off to the secondary manipulator at the specified location.

These experiments demonstrate that, given an accurate base-

to-base pose estimate and a high-quality dense 3D recon-

struction in the primary manipulator’s frame, Bi-JCR reliably

enables complex bimanual operations.

V. CONCLUSION

We introduced Bi-JCR, a unified framework for joint cal-

ibration and 3D representation in bimanual robotic systems

with wrist-mounted cameras. By leveraging 3D foundation

models, Bi-JCR eliminates the need for calibration mark-

ers and enables simultaneous estimation of camera extrin-

sics, inter-arm relative poses, and a shared, metric-consistent

scene representation. Our approach unifies the calibration and

perception processes using only RGB images, and supports

downstream manipulation tasks such as grasping and object

handover. Extensive real-world evaluations demonstrate Bi-

JCR’s robustness and its ability to generalize across diverse

environments and foundation model backbones.
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