Enter the Mind Palace: Reasoning and Planning for
Long-term Active Embodied Question Answering

M. Fadhil Ginting!-?, Dong-Ki Kim?, Xiangyun Meng?, Andrzej Reinke?, Bandi Jai Krishna?,
Navid Kayhaniz, Oriana Peltzer2, David D. Fan2, Amirreza Shaban?2, Sung-Kyun Kim?,
Mykel J. Kochenderfer!, Ali Agha?, and Shayegan Omidshafiei?

!Stanford University, 2Field Al

Abstract—As robots become increasingly capable of operat-
ing over extended periods—spanning days, weeks, and even
months—they are expected to accumulate knowledge of their
environments and leverage this experience to assist humans
more effectively. This paper studies the problem of Long-term
Active Embodied Question Answering (LA-EQA), a new task
in which a robot must both recall past experiences and actively
explore its environment to answer complex, temporally-grounded
questions. Unlike traditional EQA settings, which typically focus
either on understanding the present environment alone or on
recalling a single past observation, LA-EQA challenges an agent
to reason over past, present, and possible future states, deciding
when to explore, when to consult its memory, and when to stop
gathering observations and provide a final answer. Standard EQA
approaches based on large models struggle in this setting due to
limited context windows, absence of persistent memory, and an
inability to combine memory recall with active exploration. To
address this, we propose a structured memory system for robots,
inspired by the mind palace method from cognitive science.
Our method encodes episodic experiences as scene-graph-based
world instances, forming a reasoning and planning algorithm
that enables targeted memory retrieval and guided navigation.
To balance the exploration-recall trade-off, we introduce value-
of-information-based stopping criteria that determine when the
agent has gathered sufficient information. We evaluate our
method on real-world experiments and introduce a new bench-
mark that spans popular simulation environments and actual
industrial sites. QOur approach significantly outperforms state-
of-the-art baselines, yielding substantial gains in both answer
accuracy and exploration efficiency.

Project website: mind-palace-laeqa.github.io.

I. INTRODUCTION

Humans naturally develop long-term situational awareness
through repeated interactions with their environment, remem-
bering routines, recognizing object placements, and anticipat-
ing future needs. For example, when making a shopping list
for breakfast, one can recall household preferences and check
available supplies to identify what needs to be bought. This
type of memory retrieval and long-term temporal grounding
is key to intelligent embodied behavior. Among tasks related
to this, Embodied Question Answering (EQA) is particularly
compelling, as it probes a robot’s semantic understanding of
its environment [9]. EQA approaches are typically framed
either in active settings—where robots explore the environ-
ment from scratch to gather information [35]—or episodic set-
tings—where robots answer questions using a single recorded
trajectory [30]. While Vision-Language Models (VLMs) have
improved performance [27, 20, 17], current approaches are

limited to using only the robot’s present observations or
a single episodic memory, and do not generalize to using
multiple past experiences or long-term knowledge. To address
this gap, we introduce Long-term Active Embodied Question
Answering (LA-EQA), where robots must both recall past
experiences and actively explore their surroundings to answer
complex questions (see Fig. 1). To our knowledge, this prob-
lem is largely unexplored, and no benchmark currently exists
to evaluate it.

Performing LA-EQA with VLMs and LLMs using existing
EQA approaches is challenging for two reasons. First, repre-
senting the robot’s past observations accumulated over many
deployments across days or months is difficult: a single run
can generate thousands of images from diverse viewpoints, yet
most questions only require a few relevant frames. Ingesting
all this data directly is inefficient and often infeasible due to
limited context windows. Second, retrieving relevant informa-
tion from long-term memory and exploring relevant places
in the environment creates a vast combined search space of
past and new observations, where an uninformed search is
computationally costly. These challenges raise a need for a
new paradigm for long-term reasoning for embodied agents.

To address these challenges, we propose an approach
for effective long-term memory representation and retrieval
for embodied agents. Inspired by the mind palace tech-
nique [26]—where humans can effectively recall memories
by associating them with spatial landmarks—we structure a
robot’s long-term observations into a series of spatial world
instances. Each instance is represented by a hierarchical scene
graph that spatially groups semantic observations. Spatiotem-
poral structure is captured by linking multiple episodic world
instances over time, enabling reasoning and exploration using
retrieval of relevant experiences based on spatial proximity and
temporal context. Our method, titled Mind Palace Exploration,
has three components: 1) Generation, converting long-term
memory into multiple scene-graph world instances; 2) Reason-
ing and Planning, where the robot interleaves EQA reasoning
to identify target objects and assess if sufficient information
has been gathered; and 3) Stopping Criteria, using Value-of-
Information to balance memory recall and active exploration.

We introduce the first benchmark on LA-EQA and evaluate
our approach against state-of-the-art baselines in EQA. In
particular, the benchmark consists of diverse large-scale, high-
fidelity simulation environments and real-world office and
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Fig. 1: Different EQA problem setups. We study a new problem of Long-term Active EQA that combines active exploration

with long-term memory understanding over multiple episodes.

industrial sites across multiple days and months. Our approach
outperforms baselines by 12-28% in answer correctness,
achieves 16% higher exploration efficiency, and maintains a
12% correctness gain over the strongest baseline while using
77% fewer retrieved images, demonstrating both the effective-
ness and efficiency of our approach. We further demonstrate
the scalability and generalizability of our method in long-term
settings across diverse environment types, including reasoning
over memory from deployments spanning 2.4 km of robot
trajectories collected over 6 months. We show the benefit of
early memory retrieval stopping criteria in further reducing the
number of past observation images while maintaining compa-
rable performance. The real-world experiments demonstrate
the feasibility of our approach in practical settings, where a
legged robot deployed in a 1,000 m? office space uses past
inspection memory to efficiently explore the environment and
answer practical, day-to-day questions about the office.

II. RELATED WORK

Embodied Question Answering (EQA) has been studied
extensively from earlier works that employed learning-based
models [9, 16, 10, 43, 48, 40] to more recent efforts leveraging
foundation models [30]. Recent approaches generally fall into
two settings: episodic-memory EQA, where the agent accesses
a single episode of memory, such as in OpenEQA [30] and
ReMEmbR [2], and active EQA [21, 12, 44], where the
agent explores a novel environment to gather information for
answering questions, such as in Explore-EQA [35], Efficient-
EQA [7], and Graph-EQA [37]. We propose a new and more
general problem of Long-term Active EQA, in which the agent
must integrate information across multiple prior episodes and
active exploration to answer the question.

Semantic scene representation is a critical component for
embodied reasoning and planning. Various methods have been
proposed to encode the semantics and contextual structure of
the world, including dense 3D representations [32, 38], voxel
maps [28], and scene graphs [3, 36, 42]. In our work, we
opt for a scene graph approach [33], which has demonstrated
effectiveness in EQA tasks [45, 37, 46], and can be integrated
with scalable memory retrieval and planning. We extend the
scene graph from a single environment snapshot to a series
of episodic scene graphs labeled by macro-temporal intervals

(e.g., hours, days), enabling the agent to reason over multiple
world instances that capture how the environment evolves
across long-term deployments.

Semantic-guided navigation focuses on reasoning and
planning methods for robot navigation directed by semantic
cues, which has a rich body of literature [1, 11] involving tasks
specified by images [52, 31], object categories [47, 15], and
natural language [8, 13, 14, 29]. Our work related to semantic-
based planning to search objects [23] and gather information
for EQA taks [7]. The problems are typically framed as either
online planning, which builds representations incrementally
during execution [24, 51, 6], or offline planning, which relies
on pre-constructed maps of the environment [5, 18]. We ad-
dress the challenge of leveraging multiple historical maps for
online planning in long-term settings where the environment
evolves over time. We propose a unified approach integrating
offline memory retrieval with online exploration for LA-EQA.

III. PROBLEM FORMULATION OF LA-EQA

LA-EQA is a setting where an agent answers questions
about the environment by actively exploring it and retrieving
relevant information from long-term memory. The LA-EQA
task is defined as tuple (@, M, E,xo, A*), where Q is the
question, M = [mq,--- ,my] is a list of episodic memories,
FE is the current environment, x( is the initial robot pose,
and A* is the ground truth answer. The environment is
dynamic: its visual appearance and object states can change
over time. Each episodic memory m; = [m;1, -+ ,m; L]
contains L tuples of past robot pose and image observations
m; ; = (x;j,0:;) collected within a specific macro-temporal
interval (e.g., hours).

In LA-EQA, the agent follows policy 7(ax | xk, bk, @),
mapping its state xj at time step k, working memory hy
(history of action and observation since receiving (), and the
question to one of three possible actions: retrieve, explore, and
answer. The retrieve action a’ recalls a past memory m; ; into
hi. The explore action a moves the robot to viewpoint w;
in F, storing the new observation oy in hy; w; need not be
near the robot and can be any obstacle-free space informed by
prior experience. The answer action a” generates an answer
A in natural language based on h and terminates the task.
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Fig. 2: Mind Palace Exploration builds a Robotic Mind Palace that unifies past memories and environment representation
(1). Given a question (2), the agent alternates between reasoning over the question to identify a target object (3), planning a

search strategy through memory retrieval and exploration (4),
the question (6).

IV. MIND PALACE EXPLORATION FOR SOLVING
LONG-TERM ACTIVE EQA

Humans use the mind palace technique [26] to remember
complex information by organizing it into a structured spatial
memory, which enables efficient memory retrieval. We explore
how this technique can be applied to long-term memory
representation and reasoning in robots. Our approach consists
of three key ideas (see Fig. 2). First, prior to the EQA task,
we construct a long-term memory representation (referred to
as the Robotic Mind Palace M), which summarizes the robot’s
history of observations into multiple world instances of scene
graphs [Go, G4, - -+ , Gn]. Then, during the LA-EQA scenario,
the agent reasons over and explores these world instances in
M to answer the question () using a policy m. Additionally,
we introduce early stopping criteria using the notion of value
of information to avoid retrieving memory that is unlikely to

improve the next exploration action a”.

A. Mind Palace Generation

Mind Palace is a series of episodic world instances. The
Mind Palace divides the long-term history of robot image
observation and trajectories M into episodes m based on a
macro-temporal term such as hours, times of day, and weeks.
The chunking of the episodes comes naturally in robotics as
a mobile robot in continuous operations needs to pause any
activities while recharging the battery. Each episode becomes
a world instance in the Mind Palace and is indexed by its
macro-temporal label in texts, allowing an LLM-based agent
to select relevant episodes to recall.

An Episodic world instance is represented as a hierar-
chical scene graph. Given the sequence of robot observa-
tion and trajectory within an episode m;, we build a world

and updating its working memory (5), until it is ready to answer

representation as a hierarchical scene graph G; = (V;, &),
where V; denotes the set of nodes and &; denotes the edges
connecting the nodes [36]. First, we sample dense viewpoints
w from the past trajectory to form a set of viewpoint nodes.
Each viewpoint node w; is associated with the robot pose
x, images, a list of detected objects in the image [49, 50],
and frame captions. The list of objects and frame captions is
used as an index for LLM-based agents for image retrieval
selection. Then the viewpoint nodes w are clustered into
area nodes v € V; based on the spatial and contextual
similarity [4, 45, 22]. Each area node v is associated with
the centroid of all the clustered viewpoints and the object
list. The neighboring viewpoints w and areas v are connected
with graph edges, and every w is connected to a v, forming a
hierarchical scene graph G for each world instance.

The Robotic Mind Palace consists of a series of world in-
stances representing the past long-term memory [G1, - - , Gp]
and the present knowledge of the environment Gy. At the
start of the LA-EQA task, we assume the robot has not
explored the present environment yet, so world instance G
is only initialized with area nodes v because the state of the
environment and object placement may have changed since
the last mapping in GG;. We update G as the robot explores
the environment.

B. Mind Palace Reasoning and Planning

We perform reasoning and planning over the robotic mind
palace to solve the LA-EQA task. This involves three inter-
leaving steps: 1) reasoning over the question to determine what
object or spatial concept y to search and when the agent can
answer the question, 2) hierarchical planning over the Mind
Palace to gather information, and 3) updating the information
to the working memory h.
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Fig. 3: LA-EQA Benchmark: simulated and real-world scenes spanning multiple days / months.

Reasoning over the LA-EQA: The first step in the reason-
ing process is to determine whether the robot has sufficient
information to answer question () using working memory hy,
which stores past actions, observations, and prior reasoning
steps. The agent queries a VLM with hy and Q. If the VLM
responds it is possible to answer the question, the agent
executes the answer action and provides an answer A with
a VLM query. Otherwise, the agent queries and LLM to
identify a target object or a spatial concept y, either a specific
object explicitly stated in the question or an inferred cue (e.g.,
something to make a coffee), which becomes the next object
goal for exploration.

Planning over episodic world instances G in the Mind
Palace: Mind Palace planning begins by selecting a sequence
of world instances G to locate y efficiently. We query an LLM
with a two-step reasoning process because we observe direct
query often yields inefficient plans. The first step asks the
LLM to reason whether answering the question requires object
search across multiple world instances or if it only concerns
a specific instance. Based on this reasoning, the LLM selects
a subset of G € M and plans a sequence of G. We guide the
sequential planning with a heuristic that suggests prioritizing
past world instances over the present instance G as using
prior knowledge of y locations in the past can inform and
improve object search efficiency in the present.

Planning over areas v in the scene graph: Given a world
instance (G;, we plan a sequence of areas v to explore that
maximizes the probability of finding y. This is framed as an
object-goal navigation problem, and we adopt the planning
formulation of object search over a scene graph [15]. We first
query an LLM to output the probability of finding object y on
each area v € GG;, then use a forward search planner to find
the best sequence of areas v to explore that minimizes the
cost J to find y [25]. When exploring the present scene graph
G, the cost is defined by the path length between the robot’s
current pose x; and the centroid of each area. In contrast,
when reasoning over past graphs, the agent can teleport to
any area at a constant cost, regardless of the travel distance.

Exploring viewpoints w and replanning: Given an area
v; to search, we query the LLM to select viewpoints w based
on the textual information in G;. The object y may appear
in frame captions but often is not mentioned, and relevant
viewpoints must be inferred given the textual information [39].
The robot then explores the viewpoints by recalling images
from the Mind Palace or navigating to the viewpoints in the

environment using a robot-specific motion planner and taking
the images. The retrieved or observed images are then stored
in the working memory hi. We repeat the planning over areas
v and viewpoints w until the object y is detected in images by
a VLM or until we reach the exploration limits. If the object
is detected, we search for y in remaining world instances G
and move to the reasoning over the LA-EQA step.

C. Early Stopping of Memory Retrieval for Navigation

This section examines how to reduce memory retrieval
while maintaining exploration efficiency comparable to that
of the unlimited memory retrieval case. In particular, we
develop stopping criteria that decide when to halt past memory
retrieval and proceed with exploration. Given a sequence of
world instances that includes the present instance G (e.g.,
[G1,G2,Gy)), we use an LLM to form a prediction set of
areas v € (o, where the object y can be located with a
probability above a threshold P(y) > 1 — ¢. Studies have
shown that the LLM prediction and threshold 1 — ¢ can be
calibrated [35, 34, 41]. Using the prediction set, we define two
possible conditions to immediately stop memory retrieval from
past world instances [G1,Gz]: 1) the prediction set contains
only one area; 2) further memory retrieval will not improve
the robot plan over the next sequence to explore v; in the
prediction set. We evaluate the possible improvements on the
sequence using the notion of Value of Information (Vo) [19],
which quantifies the expected utility gain from retrieving past
memory, reducing the expected exploration cost J.

V. LONG-TERM ACTIVE EQA BENCHMARK

Existing EQA datasets [30, 35, 2, 21] focus on scene
understanding over short time spans (i.e., the same day),
limiting their ability to capture long-term evolution of a scene
(e.g., days and months). To address this, we curate the first LA-
EQA dataset and benchmark, consisting of 3 simulated and 2
real-world scenes (see Fig. 3). For each simulation scene, we
generate 5—10 scene variations over multiple days, reflecting
changes caused by common routines. For real-world scenes,
we collected 11 trajectories (30—60 mins) in an industrial site
and an office environment over a 6-month period.

Question types: We categorize the questions based on their
required temporal reasoning to capture different aspects of
long-term scene understanding. 1) Past questions pertain to a
specific event observed in a single past trajectory. 2) Present
questions require only exploration of the current environment.
3) Multi-past questions involve synthesizing information



Methods Answer  Expl. Eff. Mem. (#)
Mind Palace (Ours) 65.0% 0.45 22.86
Mind Palace w/ stopping 61.8% 0.42 15.73
Multi-Frame VLMs [30] 52.9% - 100
Socratic LLMs [30] 44.3% - 0
ReMEmbR [2] 46.1% - 0
Active EQA w/ Frames 43.7% 0.29 100
Active Socratic EQA 36.8% 0.19 0

TABLE I: LA-EQA results over answer correctness, explo-
ration and retrieval efficiency.

from multiple past trajectories (e.g., “What do we usually eat
for breakfast?”). 4) Past-present questions require reasoning
over both historical memory and the current scene (e.g., “Are
we missing anything we usually have for breakfast?”). 5) Past-
present-future questions involve predicting future outcomes
based on both past and present observations (e.g., “When do
you think we will run out of apples for breakfast?”).

We curated 150 questions, which uniformly cover the ques-
tion types. The questions were generated by seven people to
ensure the diversity of the questions. The dataset consists of
past trajectories and observations, simulation environments,
ground truth answers, and exploration solutions.

VI. EXPERIMENTS AND DISCUSSION

To evaluate our method, we answer: Q1) Does Mind Palace
Exploration outperform other EQA methods across question
types and memory lengths in long-term active EQA? Q2) Does
the early stopping criteria reduce the amount of memory re-
trieved without sacrificing performance? Q3) Can Mind Palace
Exploration be practically deployed in real-world settings?

Methods: We compare our approach against the following
baselines: 1) Multi-Frame VLMs process the question with
images and robot poses through a VLM to output the answer.
This method is the strongest approach in the OpenEQA
benchmark. 2) Socratic LLMs w/ Frame and Scene Graph
Captions use image and scene-graph captions and robot poses
to answer the question. 3) ReMEmbR [2] is a state-of-the-
art method in episodic EQA by building a queryable vector
database representation of the robot pose, observation time,
and image caption embedding and retrieving relevant entries
in the database using an LLM. We use the open-source code
of the method. 4) Active EQA Agent w/ Frames as the
Memory has the same information as Multi-Frame VLMs,
but it lets the agent explore the environment by providing a
list of viewpoints that the robot can visit. This approach is
similar to the state-of-the-art method of using long-context
VLMs with topological graphs [8] applied to the LA-EQA
setting. 5) Active Socratic EQA Agent w/ Captions as the
Memory uses the same past memory information as Socratic
LLMs w/ Frame and Scene Graph Captions, but it lets the
agent explore viewpoints and analyze explored images with
VLMs. All approaches use the GPT-40 as the language and
vision model [20] and have the same maximum budget of
image retrieval and exploration budgets on all active methods.

Metrics: We evaluate all the agents using three metrics:
1) Answer correctness is compared to the human-annotated
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Fig. 5: Performance of five different environments in the LA-
EQA benchmark with a varying number of episodes.

answer and judged by an LLM-based scoring [30]. 2) Explo-
ration efficiency measures the path length of robot exploration
compared to the oracle path length weighted by answer
correctness. 3) Memory retrieval efficiency measures the
number of past images retrieved to answer the question.

A. Q1) Mind Palace Exploration Outperforms other EQA
Approaches

Mind Palace Exploration outperforms baselines in all
metrics. As shown in Table I, our approach considerably
outperforms all methods across the metrics, highlighting the
gap in the current approaches in the long-term EQA setting.

Efficient past image retrieval is the key to multi-episodic
world understanding. Our approach significantly outper-
forms the others that require specific information from past
memory, represented by past and multi-past question types in
Fig. 4. This is largely because images convey richer visual
contexts than captions, enabling more accurate answers about
objects. In the LA-EQA setting, multi-frame VLMs struggle
as the maximum context length of the state-of-the-art VLMs is
not comparable to the sheer amount of past observations in the
memory. Our image retrieval approach is critical for efficient
image analysis, as EQA questions typically need only several
question-related images across multiple episodic memories.
The results in Table I show that our approach only needs
77.14% fewer images compared to VLM-based methods, with
much higher answer correctness.

Leveraging long-term memory improves active explo-
ration efficiency. Our method achieves higher exploration
efficiency than other active EQA agents (Table I), particularly
on past-present questions (Fig. 4) in which past information
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can benefit present exploration. Our approach often recalls past
memories to locate objects of interest so it can more accurately
predict the probabilities of the object placements across areas
v in the present environment.

Mind Palace Exploration is a scalable approach for LA-
EQA. We evaluate scalability by plotting answer accuracy
across different environments with varying numbers of past
episodic memories (Fig. 5). Our approach shows increasing
performance gains over other methods with the number of past
episodes in the memory. Given the same image retrieval limits,
multi-frame VLM performance considerably drops as the
images have less coverage across all the memories. ReMEmbR
performs steadily, highlighting the value of retrieval-based
approaches in long-term EQA problems.

Our approach generalizes to diverse environments be-
yond the standard house setting. To test our approach
further beyond standard EQA home environments benchmarks,
we evaluated Mind Palace Exploration in larger real-world
construction sites, a large office, and a simulated warehouse
(Fig. 5), where it consistently outperforms others, highlighting
its flexibility. Building a structured memory representation for
efficient exploration and retrieval becomes more critical as the
environment size increases across many episodes.

B. Q2) Benefits of Early Memory Retrieval Stopping

Early memory retrieval stopping reduces the number of
memories retrieved without sacrificing performance. As
shown in Table I, early stopping reduces the amount of image
retrieval from the past memory while maintaining comparable
answer accuracy. The early stopping reduces the number of
past world instances that the agent retrieves if there is no
new observation that will change the agent’s next exploration
action. Examples in the experiment that we observe include
when the robot predicts the possible areas where the object of
interest is on the second floor, the robot will stop retrieving
past world instances and move to the second floor. The
stopping criteria are beneficial to even further improve the
memory retrieval efficiency in Mind Palace Exploration.

C. Q3) Real-world Hardware Experiments

We demonstrate the efficacy of Mind Palace Exploration
in real-world LA-EQA use cases in an office space spanning
over 1,000 m? with 27 different areas, using a legged robot
as an office assistant. The robot accesses 10 past episodes of
past runs, inspecting the office for the past four days and six
monthly inspections from October 2024 to March 2025. All
the Mind Palace memory storage and planning, other than the
GPT4-0 query, is performed on the robot. A user sends the
question to the robot remotely through a computer, and the
robot reports back the answer once it finishes the task. We
select 7 questions from the LA-EQA benchmark that require
active exploration (Fig. 6).

Mind Palace Exploration enables efficient exploration
for practical real-world tasks. By consolidating knowledge
of past object placements, the robot can efficiently locate
relevant objects, saving an average of 3-10 room searches
across the seven evaluated questions compared to a robot
without memory access. The questions reflect realistic office
scenarios (e.g., searching for tools, tracking missing packages,
or identifying vacant desks unused for days) demonstrating
the practical utility of LA-EQA. The robot can answer all the
questions given that the information is available in its past
memory and the current environment.

VII. CONCLUSION

We present the problem of LA-EQA, a new task that re-
quires robots to combine long-term environment understanding
with active exploration. We propose Mind Palace Exploration
to address LA-EQA by representing long-term memory and
the present environment with a robotic mind palace, enabling
reasoning and planning over the Mind Palace. We introduce
the first benchmark for long-term active EQA, spanning days
of simulation environments and months of real-world data,
to foster future research in long-term reasoning. Our approach
significantly outperforms state-of-the-art EQA baselines, high-
lighting the need for a new paradigm for LA-EQA.
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