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Abstract— 3D scene graphs have recently gained popularity
in robotics as a scalable means to build rich world repre-
sentations. However, systems that use 3D scene graphs for
downstream applications reason over this graph-structured data
in an ad-hoc way. In this abstract, we propose Cypher, an
existing graph query language, as an general and flexible
query interface for working with 3D scene graph data. We
demonstrate that large language models (LLMs) can easily
ground natural language questions to this query language,
without model finetuning or in-context examples. Finally, we
show that even when the LLM prompt contains no schema
information, an LLM that is allowed to make multiple data
queries can achieve non-trivial success rates.

[. INTRODUCTION

Large foundation models have led to impressive advances
in robots reasoning about the world. However, most re-
cent works using LLMs or VLMs for semantic and spatial
understanding have focused on small-scale scenes, such
as an individual rooms or buildings. Methods that rely
on language-aligned embeddings to synthesize information
about scene context [1], [2] can be scalable, but they do
not directly provide a way of answering questions such as
“Which regions have an above-average number of trees?”

We seek to scale robot reasoning to the rich, large-scale
3D scene representations that can be constructed by systems
such as Hydra [3] (Figure[I)) by using a structured yet flexible
graph query interface. One of the limitations for scaling LLM
reasoning to larger scenes is the context window size. There
is a tension between presenting rich scene descriptions to
enable fine-grained reasoning and the need to limit context
length. The situation is even more dire if we hope to have
the LLM update the scene representation, as the output size
limit is often much smaller than the input size. For example, a
small serialized scene graph built with Hydra from less than
five minutes of data contains approximately thirty million
characters, or about seven million tokens. GPT4.1 has about a
one million token input limit, and a thirty-two thousand token
output limit [4]. These constraints emphasize that updating
the scene graph requires an LLM update a representation and
not merely to regurgitate a full scene graph.

A structured graph-based query language provides a useful
interface for letting an LLM query for information about a
scene and update information or structure in the robot’s world
representation. We seek a flexible and composable interface,
providing the LLM with a well-defined way for digesting
and emitting information, that is not unduly constrained by
a predefined ontology. Existing works [5] have demonstrated
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Fig. 1.

Left: A kilometer-scale 3D scene graph with 314 objects, 15944
places, and 124 regions. Right: Scene graph extent on overhead image.

the utility of defining a structured interface between an LLM
and underlying data structures in perception and planning.
In this vein, we propose a system that supports querying
large-scale 3D scene representations. It supports both graph-
based relational queries and geometric spatial indexing. Our
implementation also has the advantage of using an existing
graph query language called Cypher [6], enabling the genera-
tion of syntactically and semantically correct queries without
finetuning or in-context examples.

II. CYPHER FOR 3D SCENE GRAPH QUERIES

Cypher [6] is a query language for specifying query and
update operations on graph-structured data. The Cypher data
model considers a graph of nodes each with a label (e.g.,
Object) and a set of key-value attribute pairs (e.g., {class:
vehicle}). Typed edges may be added between pairs of nodes.
Queries written in Cypher are usually executed by a graph
database [7] storing the data of interest.

The full specification for Cypher cannot be given here,
but the fundamental structure of Cypher queries is straight-
forwar(ﬂ MATCH clauses retrieve matching nodes, relation-
ships, and attributes from the graph. RETURN clauses spec-
ify what information should be returned from the matched
values. WHERE clauses filter results based on multiple
match clauses.

For example, a simple query for the types of
objects in a scene graph could be written as MATCH
(n: Object) RETURN DISTINCT n.class as
class, COUNT (%) as count, which returns the
number of distinct semantic classes among Object nodes,
as well as the count of objects of each class.

We can easily write queries based on the connectivity in
the graph, such as finding all scene graph places within five
nodes of a particular query place P32:

! A functional prototype of the system discussed in this paper with further
examples can be found at https://github.com/GoldenZephyr/
heraclesl A detailed introduction to Cypher can be found at https:
//neo4dj.com/docs/cypher—-manual/current,
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MATCH (p: Place {nodeSymbol: P32})
MATCH path=

(p) —[:CONNECTED #1..5]—->(c:
RETURN DISTINCT c.nodeSymbol as ns

Place)

We can find all objects
by querying MATCH (r: Region nodeSymbol:
R1)-[:CONTAINS*]->(0o: Object) RETURN o.
This query finds all transitive containment relationships, a
useful feature to decouple the query logic from idiosyncratic
scene graph construction. For example, this query would
correctly return objects that are added as children of region
nodes, or objects which are children of places which are in
turn children of regions, as found in Hydra [3].

Already this is a useful interface for a human programmer
to interface with large-scale map representations, but in the
next section we will show that Cypher is a convenient target
for grounding natural language queries with an LLM.

contained in region R1

III. LLM GROUNDING TO CYPHER QUERIES

We load a large-scale 3D scene graph built with Hydra
(Figure [I) into a Neo4j graph database and test against a set
of 25 evaluation questions (Appendix A) with unambiguous
answers in this scene graph. We evaluate an LLM’s ability
to use Cypher to answer scene graph queries in two settings.

First, we provide the LLM a detailed description of the
scene graph schema in the system prompt (Appendix C),
which works when our goal is to provide a language query
interface to scene graphs built by systems with existing scene
graph ontologies such as Hydra [3]. Second, we evaluate
the case where the system prompt provides no specific
information about the scene graph structure. An LLM must
be able to successfully answer queries in this setting if we
desire ad-hoc, task-specific scene graph ontologies, or if we
expect the LLM to add new kinds of layers or edges to
the scene graph. The LLM prompt does not contain any in-
context examples of Cypher queries in either setting.

To evaluate the known-schema case, we implement a two-
stage process. First, the LLM provides a Cypher query to
answer the question. Directly comparing the results of this
query to the ground truth solution is difficult, because the
result contains extraneous information that is difficult to
normalize within the query. The second stage uses another
LLM call to turn the Cypher query results into a specified
answer formatting. The success rate for these queries is
presented in Table [I, for several ChatGPT model sizes.
ChatGPT4.1 performed well, and most of its incorrect an-
swers were reasonable although technically incorrect. Most
of ChatGPT4.1-Nano’s incorrect answers were caused by not
correctly checking for transitive containment relationshipsﬂ

These queries assumed a specific scene graph ontology,
specified ahead of time in the system prompt. However, it
may make sense to add new kinds of edges, new kinds
of layers, or new node attributes on the fly. Making these

2This failure mode causes a large drop in performance, because regions
contain places and places contain objects. Regions are not directly connected
to objects.

TABLE I
QUERY SUCCESS RATE

Method Valid Cypher | Correct
Single Query [ChatGPT-4.1] 24/25 20/25
Single Query [ChatGPT-4.1-Mini] 23/25 17/25
Single Query [ChatGPT-4.1-Nano] 21/25 8/25
Multi-Query [ChatGPT-4.1] - 24/25
Multi-Query [ChatGPT-4.1-Mini] - 19/25
Multi-Query [ChatGPT-4.1-Nano] - 9/25
Multi-Query, No Schema [4.1] - 10/25
Multi-Query, No Schema [4.1-Mini] - 9/25
Multi-Query, No Schema [4.1-Nano] | - 3/25

changes at runtime requires the LLM to make intermediate
queries to the database in order to understand the structure
of the information. We evaluate an LLM’s ability to do
this using the same evaluation questions, but we let the
LLM make intermediate Cypher queries (up to 10) before
returning its final answer. We test this multi-query setup with
both the full-information system prompt used in the previous
test, and a less informative system prompt that contains
no specific information about the scene graph or database
schema (Table E] Multi-Query and Multi-Query, No Schema
respectively). For these tests, validity of the intermediate
graph queries is not tracked.

The ability to run multiple queries improves the model’s
performance in the full-information case, because the model
can recover from syntactic errors or resolve ambiguities.
Answering the questions is a substantially harder problem
without the prior schema knowledge, and Table |I| shows a
corresponding lower success rate. A qualitative analysis of
the query sequences shows two areas of difficulty. The first is
syntactic ambiguity about property names. For example, ask-
ing about “object types” leads to useless queries if the rele-
vant attribute is called “class” instead of “type”. However, the
failure of the initial query is often enough to prompt better
future queries. The second difficulty is semantic ambiguity
about the graph connectivity. Many LLM-generated queries
assume that objects are directly connected to regions, even
though they are not. This kind of misconception does not
seem to be remedied by feedback from the query execution.
This demonstrates the need for a concise and precise way of
describing the semantics of a scene graph, whether it has a
rigid ontology like [3], or a more flexible ontology adapted
online by an LLM.

IV. FUTURE WORK

So far, we have only investigated an LLM’s ability to query
a scene graph. However, Cypher also enables editing nodes,
edges and attributes. This is a promising future direction,
although evaluation becomes more difficult.

Another challenge is aligning the semantics of the 3D
scene graph with the semantics expressed by the query
language. For example, locality queries can be run either
by bounding box containment or edge connectivity in the
graph. The proper choice depends on the (possibly latent)
meaning of the edge of the scene graph. A more domain-
specific restricted query language may help to align the
LLMs expectations of how it can interact with the data.
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APPENDIX

A. Evaluation Questions and Answers

The following questions and solutions are used to evaluate the system’s ability to answer natural language 3D scene graph
questions by grounding to Cypher queries. The particular syntax of solutions and the notion of equality used to evaluate
correctness is discussed in Appendix B.

Question:
Solution:

"What are the distinct object classes?"
<tree, fence, vehicle, seating, window,

sign, pole, door, box, trash, rock, bag>

Question:
Solution:

sign: 6,

Question:
Solution:

Question:
Solution:

Question:

"How many of each object type are there?"
{tree: 163, fence: 17, vehicle: 26, seating: 9, window: 1,
pole: 21, door: 3, box: 4, trash: 1, rock: 62, bag: 1}

"Give me the location of all signs in the scene graph"

<POINT (-8.284313559532166 -14.206965416035754 1.974417498137088¢6),

(
POINT (-30.409549247386845 —-15.735817166261894 1.419422089360481),
POINT (-29.527192555941067 —-11.574765984828655 1.4839779872160692),
POINT (-29.246166506680574 —-8.68991950641979 1.4494154886765913),
POINT (-29.16052139096144 -7.293464509452262 1.556024234469344),
POINT (-69.23055948529925 83.1722952524821 0.790333880555062) >

"What object node symbols are within 10 meters of x:-100, y:16, z:02"
<0370, 0371, 0372, 0373>

"How many mesh places are within 5 hops of mesh place P1832

(not including the starting place)."

Solution:

Question:
Solution:

Question:
Solution:

Question:
Solution:

Question:
Solution:

Question:
Solution:

Question:
Solution:

Question:

141

"What object types are in Room R91"
<tree, window, pole>

"How many objects are in room R1?"
7

"Which room symbol has the most object types?"
R96

"Which room symbol has the highest number of objects?"
R100

"Between tree and box, which is in the fewest rooms?"
box

"What’s the least common object type in Room R100 that is not a rock?"
vehicle

"What are the empty room symbols (rooms containing no objects) that

are connected to room R99?"

Solution:

Question:
Solution:

<R52, R6, R50>

"List all the room symbols that have a rock in them."
<R30, R88, R86, R99, R112, R109, RS87,

RS, R11, R12, R121, R122, R65, R2, R16, R8I,

R100,

R3, R73, R25, R70, R74, R28, R102>



Question:
Solution:

Question:

"List all the room symbols that have only rocks in them."
<R88, R109, R8, R11, R12, R121, R65, R73, R25>

"Give me the point coordiantes of the rocks, either in

Room R88 or Room R10072"

Solution:

Question:
within
Return

solution:

Question:

<POINT (-80.96216372785896 27.755121998403265 4.415851417629198),
POINT (-0.7888006318588646 —-2.903889067318975 0.0882817480941208),
POINT (-0.825403584722887 -4.263898042210362 0.03717637520381495) >

"Find the distance of the rocks and trees in Room R100 that are
3.0 meters of each other, ordered by shortest distance.
only the distances."
[0.7490734671216159, 1.1143781476916492, 1.2333940296376114,
1.8810572358450335, 2.297507598063438, 2.940645758149497]

"Give me a list of position coordinates of all the rocks

and vehicles in Room R1007?"

Solution:

Question:
Solution:

Question:
Solution:

Question:

<POINT (-0.7888006318588646 —-2.903889067318975 0.0882817480941208),

POINT (-0.825403584722887 —-4.263898042210362 0.03717637520381495),
POINT (-2.4370584895468164 2.587475128662892 —-0.08760905527767454),
POINT (-5.885951024601442 -10.49500067755397 -0.2860741552871627),
POINT (-5.885951024601442 -10.49500067755397 -0.2860741552871627)>

"Give me all the place symbols that have boxes but no trees?"
<pl2343, pl2645, p906, pl2659>

"Give me all room symbols with an above-average number of trees?"
<R1,R2,R3,R5,R7,R9,R14,R15,R16,R17,R18,R20,R26,R30,R31,R32,
R38,R68,R70,R75,R81,R84,R86,R89,R91,R93,R99,R100,R101,R102,R103>

"Give me room symbols with a number of trees that’s at least

one standard deviation above the mean ordered by the most trees?"

Solution: [R100, R20, R2]

Question: "Which object types have more than 30 instances?"

Solution: <tree, rock>

Question: "What is the maxium number of trees in any place?"

Solution: 3

refinement_type: "number"

Question: "What are the object point coordinates inside the bounding box

with the following coordinates: x1:-0, y1:-0, z1:0, x2:10, y2:10, z2:57?

Return
solution:

Question:
Solution:

Question:
Solution:

only the coordinates."

<POINT (0.11896780423469352 6.619487872937831 0.22895595844744182),
POINT (0.7478225974187459 5.342799944420383 0.49659509568998256),
POINT (4.855817626186302 1.5613172245024654 0.8235663587714304) >

"What rooms have the same object types as R102?"
<R2, R70>

"What is the distance between mesh places P906 and P1985?"
1.588630981055123



B. Evaluating Correctness

Equivalence between two answers is evaluated within the Set, List, Dictionary, Point (SLDP) equality language. In this
language, primitives are either a string or a floating point number. A set is denoted with angle brackets, e.g., < 1,2,3 >.
A list is denoted with square brackets, e.g., [a,b,c]. A dictionary is denoted with curly braces and colons, as in Python:
{keyl : vall, key2 :wal2}. A point is denoted as Point(x y z). Sets, lists, and dictionaries can be arbitrarily composed.

Two strings are equivalent if they are character-wise equal after stripping leading and trailing whitespace and converting
to lowercase. Two numbers are equivalent if they are within some tolerance of each other (0.01 in this work). Two lists are
equivalent if the i*" elements of each list are equivalent. Sets A and B are equivalent if each element of A is equivalent to
an element of B and each element of B is equivalent to an element of A. Two dictionaries A and B are equivalent if every
key in A is in B, every key in B is in A, and for each key k, A[k] is equivalent to B[k]. Two points are equivalent if they
are within some tolerance of each other (here, within .01 in the L., norm).

The solutions to each question are given as an SLDP expression. The LLM answer refinement prompts tell the LLM to
return its result as an SLDP expression. An LLM’s answer is marked correct if it is equivalent in SLDP to the solution.

C. Prompts
Single-Query System Prompt

You are a helpful assistant who is an expert at mapping from natural language
queries to Cypher queries for a Neo4]j graph database. You have access to a
database representing a 3D scene graph, which stores spatial information that
robot can use to understand the world. Given a query, your task is to generate a
Cypher query that queries the relevant information from the database.

Labels in Database:
- Object: a node representing an object in the world.
Object Properties:
- nodeSymbol: a unique string identifier
- class: a string identifying the object’s semantic class or type
— center: the 3D position of the object, as a POINT type
— MeshPlace: a node representing a 2D segment of space the robot might be able to
move to.
- nodeSymbol: a unique string identifier
- class: a string identifying the place’s semantic class or type
— center: the 3D position of the mesh place, as a POINT type
— Place: a node representing a 3D region of free space
- nodeSymbol: a unique string identifier
— center: the 3D position of the place, as a POINT type
— Room: a node representing a room or higher-level region
— nodeSymbol: a unique string identifier
— center: the 3D position of the room, as a POINT type

Object, MeshPlace, Place, and Room are all Cypher labels attached to nodes.

Places and Mesh Places represent a higher level of the hierarchy compared to
objects, but lower level than rooms.

There are two kinds of existing edges. First is (a)-[:CONTAINS]->(b),

which connects nodes between different layers and means that b is contained
within a. Nodes in higher levels of the hierarchy may contain nodes in lower
levels of the hierarchy, but nodes in the lower level of the hierarchy will not
contain higher-level nodes. The other kind of edges represent connectivity
within a layer: [:OBJECT_CONNECTED], [:PLACE_CONNECTED],
[:MESH_PLACE_CONNECTED], [:ROOM_CONNECTED].

Note that in the current version of cypher, ‘distance’
has been replaced by‘point.distance’.



Also, do not use any apoc functions in your queries,
because apoc is not installed so those queries will crash.

Now, generate a cypher query for this natural language query:
< The Natural Language Query >

Use a series of steps to formulate your final answer in a chain of thought
style. Remember the output format must be in JSON and formatted as a Python
dictionary of the form: {"chain of thought": <...>, "cypher": <...>}

When we refine the Cypher query result into a final answer in the single-query evaluation, one of the following prompts
is used depending on the kind of solution:

Refine to Number

You are trying to answer the question: {question}.

You have the following data as an intermediate answer. Please
reformat the following data into a number,

Your response should contain only the number

and no extraneous information.

Refine to String

You are trying to answer the question: {gquestion}.

You have the following data as an intermediate answer. Please
reformat the following data into a string,

Your response should contain only a *singlex word, no gquotation,
and no extraneous information.

Refine to List

You are trying to answer the question: {gquestion}.

You have the following data as an intermediate answer. Please

reformat the following data into a list of the form [elementl, element2, .... elementN],
maintaining the order implied by the intermediate data.

The list is denoted by square brackets [ ].

Elements within the list should not have quotations around them.

If you need to represent a POINT in the list, the syntax is POINT(x y z).

Your response should contain only the list and no extraneous information.

Refine to Dictionary

You are trying to answer the question: {question}.

You have the following data as an intermediate answer. Please

reformat the following data into a

dictionary of the form {{keyl: valuel, ..., keyN: valueN}}

Keys and values should not have quotations around them.

The dictionary is denoted by curly braces {{ }}.

If you need to represent a POINT, the syntax is POINT(x y z).

Your response should contain only the dictionary and no extraneous information.

Refine to Set

You are trying to answer the question: {question}.
You have the following data as an intermediate answer. Please
reformat the following data into a set of the form <elementl, element2, .... elementN>.



Elements within the set should not have quotations around them.

The set is denoted by angle brackets < >.

If you need to represent a POINT, the syntax is POINT(x y z).

Your response should contain only the set <elementl, ..., elementN>,
and no extraneous information.

Schema-Free System Prompt

You are a helpful assistant who is an expert at mapping from natural language
queries to Cypher queries for a Neodj graph database. You have access to a
database representing a 3D scene graph, which stores spatial information
that a robot can use to understand the world. Given a query, your task
is to generate a Cypher query that retrieves the relevant information
from the database.

Note that in the current version of cypher, ‘distance' has been replaced by
‘point.distance'. Also, do not use any apoc functions in your queries.

Agent Instructions:
1. Before attempting to generate the final Cypher query, run exploratory queries
to verify available node labels, relationship types, and property keys if

necessary.

2. If the query you generate is invalid, fails to run, or produces an error,
retry by correcting the Cypher based on feedback or known schema rules.

3. You may break down the query into parts to iteratively refine the correct
Cypher expression.

You can call the cypher query tool up to 8 times. If you try to execute more
than 5 queries, your answer will be counted as wrong.

Now, use cypher queries to answer this question:
< The Natural Language Query >
Use a series of steps to formulate your final answer in a chain of thought

style. When you are ready to give your final answer, put it between a beginning
and ending answer tag: <answer> the answer here </answer>.

The end of the schema-free prompt contains a description of the question-specific output format, essentially the same as
the “Refine to X prompts above. In the multi-query case, this instruction is part of the initial system prompt rather than an
explicit separate step.
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