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Abstract—Real-world dexterous manipulation often encounters
unexpected errors and disturbances, which can lead to catas-
trophic failures, such as dropping the manipulated object. To
address this challenge, we investigate the problem of catching
a falling object while it remains within grasping range and,
more importantly, resetting the system to a configuration favor-
able for resuming the primary manipulation task. We propose
Contact-Aware Dynamic Recover (CADRE), a reinforcement
learning framework that incorporates a Neural Descriptor Field
(NDF)-inspired module to provide an implicit contact-centric
representation. Compared to methods that rely solely on object
pose or point cloud input, NDFs can directly reason about
finger-object correspondence and naturally adapt to different
object geometries. Our experiments show that incorporating
contact features improves training efficiency, enhances conver-
gence performance for RL training, and ultimately leads to
more successful recoveries. Additionally, CADRE demonstrates
zero-shot generalization ability to unseen objects with different
geometries.

I. INTRODUCTION

Robots performing real-world manipulation tasks can en-
counter unexpected disturbances and modeling errors, which
can lead to catastrophic failure, such as dropping the manip-
ulated object. This challenge is especially severe in dexterous
manipulation with a multi-fingered hand, where precise control
of high-dimensional hand systems is essential to prevent
dropping the object. This issue is further exacerbated in robotic
systems without tactile sensing, where the absence of direct
contact feedback makes it challenging to detect whether the
object is being grasped firmly.

In this work, we focus on dynamic recovery, specifically,
catching falling objects before irrecoverable failure occurs.
Rather than improving the inherent robustness of primary
manipulation policies, we propose a complementary strategy
that incorporates a fallback catching policy — The robot
switches from the primary manipulation policy to the catching
policy when object dropping is detected. This policy is respon-
sible for catching falling objects during failure events, and,
importantly, resetting the robot system to states from which
the primary manipulation can resume. This is because merely
catching falling objects is not enough to ensure successful
recovery. Specifically, while power grasps can effectively catch
a large variety of objects [18| [8]], the primary manipulation
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task often requires specific grasp types, such as precision
grasps [34} 42, i4]. Switching from power grasps to precision
grasps presents significant challenges. Therefore, our recovery
policy is designed to achieve grasp configurations that support
the contact requirements of the primary manipulation task. Ad-
ditionally, to ensure practical applicability, the recovery policy
must be able to adapt to objects with different geometries.

To address the challenges mentioned above, we present
Contact-Aware Dynamic Recovery (CADRE), a reinforcement
learning approach that incorporates a contact-centric repre-
sentation in its observation space. Our work is based on the
importance of contact in dexterous manipulation [16} |6, |3} [9].
CADRE is built upon the insight that maintaining consis-
tent contact behaviors across different object geometries is
one of the fundamental factors for successful generalization.
The contact information is derived from Neural Descriptor
Fields(NDFs) [32,133]]. NDF captures the geometric correspon-
dence between 3D coordinates and the object point clouds.
CADRE leverages NDF features as implicit contact infor-
mation for dexterous manipulation. This approach provides
comprehensive contact modeling for both regions that should
be in contact (e.g., fingertips) and regions where contact should
be avoided (e.g., palm).

Our main contributions are summarized as follows: (1)
We develop an NDF-based implicit contact representation for
contact-rich dexterous manipulation that effectively captures
the geometric correspondence between the hand and the ma-
nipulated object. (3) We propose the problem of recovery
through catching, where a robot must not only catch the
falling object but also achieve grasp configurations from which
the robot can seamlessly resume the primary manipulation
task. (3) We present a reinforcement learning framework for
dynamic recovery that leverages the contact representations to
achieve successful grasps and favorable states for subsequent
manipulation tasks. (4) We demonstrate empirically that our
contact representations enable effective generalization across
different geometries in our dynamic recovery tasks.

Our experimental results demonstrate that our contact-
aware approach significantly improves recovery performance
on training objects while enabling zero-shot generalization to
unseen objects of the same type but with different geometries
(e.g. various sizes of screwdriver). Please see more details at
https://cadrecatching.github.io/.
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Fig. 1: CADRE recovers from object-dropping failures by catching the object and resetting to states favorable for resuming the
primary manipulation task. Leveraging contact information from a pre-trained NDF model, it generalizes recovery behaviors

to objects with different geometries.

II. RELATED WORK

A. Dynamic Manipulation

Dynamic manipulation involving rapid robot and object
motion has been a popular research area in robotics [15, 22}
10, 1431140, [11]. Within this topic, catching fast-moving objects
is a particularly relevant subdomain to our work. Prior work
has explored both planning-based approaches [36} 25} 18} |30]]
and RL-based methods [44, [12, 20} [2] for object catching.
However, these methods primarily focus on stable catch-
ing but without consideration of grasp configurations, which
converges to using power grasps in most cases. Moreover,
those methods do not consider the requirements of subsequent
manipulation tasks. In contrast, our work addresses the more
difficult challenge of recovery through catching, where the
robot must not only catch falling objects but also achieve grasp
configurations that enable seamless resumption of the primary
manipulation task.

B. Representation Learning for Manipulation

The choice of perception representation (e.g., point cloud,
image, contact information) to input into RL policies sig-
nificantly impacts the manipulation performance. A majority
of research directly uses point clouds as the representation
for the 3D scene [21) 128, [13| 138, [1]]. Recent work has also
explored more sophisticated representations. For instance, Wu
et al. [37] encode image observations into a learned latent
space for model-based RL, while Driess et al. [7]] utilize
Neural Radiance Fields (NeRF) [24] to obtain latent scene
embeddings for RL policy inputs. However, those methods do
not consider contact-rich dexterous manipulation scenarios.

Neural Descriptor Fields (NDFs) and similar implicit ge-
ometric representations have also made progress in robot
manipulation. Khargonkar et al. [[17] propose an implicit grasp
feature for cross-object and cross-robot generalization, while
several other works [5! 14, 33] apply NDF-inspired represen-
tations to motion planning. However, the application of such
implicit geometric representations to RL and dynamic dex-
terous manipulation remains unexplored. Our work addresses

this gap by leveraging NDF-inspired contact representations
to enable dynamic recovery.

III. PROBLEM STATEMENT

We focus on the task of catching a falling object for re-
covery. Specifically, the recovery problem inherently includes
two objectives: (1)the robot must prevent dropping the object,
and (2) the system should recover to a state from which
the primary manipulation task can be resumed. The inclusion
of the second objective distinguishes our work from prior
literature on catching.

We formulate the dynamic recovery through catching as
a Markov Decision Process (MDP), defined by the tuple
(S, A,p,r,7), where S is the state space, .4 is the action
space, p : S x.A — & is the transition function, 7 : Sx A — R
is the reward function and v € [0, 1) is the discount factor. The
objective is to optimize a policy 7y to maximize the expected
discounted return.

At each time step, the policy receives observations o; :=
{qt,%¢,v:}, where q; represents the robot’s joint angles, x;
is the object pose in SE(3), and v; denotes the object’s twist
(linear and angular velocities). We assume access to a low-
level joint position controller; therefore, the robot action a; is
defined as the desired joint position at the next time step.

To make the problem more tractable, we assume knowledge
of the object’s full geometry, i.e., the full point cloud P of
the object. The objective is to recover both the robot and the
object to a desired configuration §q and X respectively, which
are manually defined and considered suitable for resuming the
manipulation task.

Additionally, we aim to develop a method that generalizes
across object geometries. During RL training, objects are ran-
domly sampled from a predefined distribution. While during
evaluation, objects are selected from both the in-distribution
set and the out-of-distribution set. An ideal method should be
able to catch the object in contact configurations similar to
those from the training examples, even if the target object is
out of distribution.

The method is evaluated based on (1) whether the robot
successfully catches the object, (2) the difference between



the final state of catching and the desired state, (3) and the
performance of the subsequent primary manipulation task.
Compared to other dexterous manipulation setups, this task
is more challenging because the robot needs to move fast
to handle dynamic situations, but also precisely to reach the
desired configurations.

IV. METHODS

Our approach, Contact-Aware Dynamic Recovery
(CADRE), leverages reinforcement learning to optimize
recovery policies in dexterous manipulation tasks. Since the
objective is to recover to desired grasps with appropriate
contact patterns, the policy should naturally be aware of
contacts. To enable contact awareness and generalization to
unseen objects based on contacts, we incorporate contact
features derived from NDFs into the observation space. The
NDF model extracting contact features is pretrained and
remains fixed during RL training. The contact features enable
the RL policy to achieve consistent behaviors across objects
with different geometries.

A. Preliminary: Neural Descriptor Fields

Neural Descriptor Fields (NDFs) [32] is a learned repre-
sentation that captures geometric correspondence between a
queried 3D coordinate and an object. Given an object point
cloud P, NDF extracts an n-dimensional geometric feature
for any 3D coordinate p:

fvpr(p|P) : R® = R™ (1)

During NDF training, an MLP-based network ®(p|E(P)) is
trained to predict occupancy or signed distance of the query
point p, conditioned on the object point cloud P. £ is the
PointNet-based encoder, which extracts the latent features of
the object point cloud. The NDF feature is defined as:

69@ (plE(P )

where @ denotes concatenation of activations from each layer
of ®, and L is the number of hidden layers. This feature
serves as an implicit occupancy representation and provides
rich geometric information about the geometric relationship
between the queried point and the object surface.

In our implementation, ®(p|&(P)) is a double-headed
model that predicts both occupancy and signed distance,
similar to [14]. While occupancy prediction mainly captures
features for points near contact regions, our method addition-
ally requires features at non-contact points. In our method, the
NDF model is pretrained and kept fixed during RL training.

Inpr(p|P) :

B. Contact-Aware Dynamic Recovery

1) Contact-Aware Grasp Feature: In cases where the re-
covery policy must handle objects with various shapes, the
robot needs to adjust its actions to catch (make contact) based
on the object’s geometry to ensure successful manipulation.
Furthermore, the recovery should also result in favorable
contact configurations for resuming the primary manipulation

task. Therefore, incorporating contact information as a part of
observation input is expected to improve training efficiency,
convergence, and generalization performance.

Choosing an appropriate contact representation is the key
question for designing the contact-aware recovery policy. In
this work, we leverage NDFs to characterize contact features
for dexterous manipulation. By querying points on the hand,
we can interpret the corresponding NDF features as indicators
of contact: contact points are expected to lie near the decision
boundary of the occupancy function, where the NDF occu-
pancy prediction output transitions between inside and outside
predictions.

While NDF provides per-point contact features, it does not
directly provide information characterizing the contact features
of a grasp To address this, we predefine K key points on the
hand {pZ K |, where pfi denotes the position of the ¢-th key
point in the k;-th link frame. The grasp feature g(q,x|P) is
defined as the concatenation of the NDF features of all the
contact points:

9(q,x[P) : @ fnpr(
where q is the robot joint angles, x is the object pose in
SE(3). ffx denotes the forward kinematics function returning
key point locations in the world frame, and T'(x) is the
transformation from the world frame to the object frame.

For key point selection, we sample points from each robot
link rather than restricting them to the fingertips. Although
fingertips are often primarily involved in contact, non-contact
regions also play a critical role in characterizing the grasp
feature. For example, one of the major distinctions between a
power grasp and a precision grasp is whether the palm is in
contact with the object. In practice, we assign one key point
for each link for computational efficiency, although using more
points could potentially lead to improved performance. (See
details in Appendix [C))

In summary, CADRE receives observations o; and com-
putes the contact-aware grasp feature g = g(q, x|P) at every
time step. The input into the RL policy is the combination of
observations and grasp features.

2) Reinforcement Learning for Dynamic Recovery: Due to
the complexity of modeling the dynamic interactions between
the hand and the object, we choose to use Proximal Policy
Optimization(PPO) [31], a model-free RL method, to optimize
the dynamic recovery policy.

Reward Function: The reward function is defined as fol-
lows:

ffk(pz » dy ’L)‘P)v (3)

TI=Tq +Ttorque +renergy +7'drop+7’obj_v +Tobj_pose +Tq +Tcontact,

4)
where we omit the weighting parameters and the time step
subscript for simplicity. Specifically, 4 := —||a; —a;_1]|? pe-
nalizes non-smooth actions, and 7toryuqe 1= —||7||* penalizes

torque. Although we assume only access to the joint position
controller and joint torque 7 is not part of the action space, T
is computed from the controller output. repergy = —||77¢||?
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Fig. 2: Contact-Aware Dynamic Recovery (CADRE) aims to catch a manipulated object when it falls from the grasp and
recover to states that support the resumption of the manipulation task. CADRE leverages a pretrained NDF model to extract
implicit contact features from the grasp. The contact-aware grasp features are incorporated into the RL observations, enhancing
the policy’s awareness of contact and improving recovery performance.

regularizes the energy consumption for the robot. rg,o, =
—1grop(x), Where 14,4, is an indicator function that returns 1
if the object’s position exceeds a predefined workspace bound-
ary. rop;_v := exp(—||v||?)+exp(—||w||?) encourages low lin-
ear velocity v and angular velocity w of the object. We shape
Tobj_v With an exponential function as the velocities can yield
excessively large magnitudes during training (e.g., the object is
falling fast). The exponential function helps bound the reward
and leads to more stable training. r, := exp(—||q — §||?) and
Tobj_pose ‘= €XP(— fpos (X, X)) +exp(— forn (%, X)) encourage
the robot to recover to the desired robot configuration q
and object pose X. q and X are predefined and considered
favorable for the primary manipulation task. Ideally, q and
% would vary based on object geometries. In practice, we
fix them across all objects because the optimal configurations
remain similar within the range of variations considered during
training. fp,s computes the difference between the current and
desired object position, and f,,., computes the orientation
difference. rcontact ‘= Lcontact(Q,X) rewards the robot for
achieving task-relevant contact with the object. The definition
of L ontact depends on the task and is further explained in

Sec. [Vl

V. EXPERIMENTS

We evaluate our method on two tasks: screwdriver recovery
and nut recovery. We aim to design our experiments to
answer (1) whether incorporating implicit contact features
can facilitate RL training and improve performance; and (2)
whether CADRE generalizes to unseen objects sampled from
a slightly different distribution.

A. Experiment Setup

We use I[saacSim to simulate the recovery task. Our robot
consists of an Allegro Hand [29] mounted on a 7-DoF KUKA
iiwa arm. We use PPO [31]], implemented from RL games [23]],
to optimize the recovery policy. The RL implementation details
are described in Appendix [A]

Object generation: During RL training, we randomly sam-
ple 50 objects from a predefined shape distribution. Specifi-
cally, the objects are generated using the same geometric pa-
rameterization method, but with variations in their size param-
eters. (See Appendix [B)). The choice of objects are randomized
across episodes during RL training to encourage generaliza-
tion. For evaluation, we consider both in-distribution(ID) and
out-of-distribution(OOD) objects. ID objects consist of 5 new
unseen objects sampled from the same distribution used for
training, while OOD objects are sampled from a different
distribution as a more challenging test for generalization.
Additionally, the NDF model fnypg is trained with objects
sampled from the same distribution for RL training. Thus,
OOD objects for the RL policy will also be OOD for the
NDF model.

Evaluation metric: (1) catch success rate: a catch is
considered successful if the object remains within a predefined
bounding box throughout the episode, (2) reward: cumulative
reward over an episode, (3) number of desired contacts (4)
number of undesired contacts, (5) position error: the Euclidean
distance between the final and the desired object position, and
(6) orientation error: defined as the angle between the final
and desired z-axes of the object frame, since the objects in
our experiments are rotationally symmetric about the z-axis.
Metrics (3) and (4) are task-specific and detailed in Sec.
and Metrics (2)-(6) are only calculated for successful
trials.

As the most direct evaluation involves initializing the pri-
mary manipulation task with the final recovered states, we
also introduce a screwdriver turning task to assess whether the
post-recovery states are suitable for downstream manipulation
tasks. See details in Sec. Additional implementation
details are described in Appendix

1) Screwdriver Recovery: We set up the recovery task
in a screwdriver turning scenario with a precision grasp.
Screwdriver turning with a precision grasp has been widely



studied [26} 134} 411,139, [19]. A precision grasp is preferred, as
opposed to a power grasp, as the choice of robot-screwdriver
contact significantly affects the turning performance, high-
lighting the importance of contact reasoning. Specifically,
we follow the setup presented in [39](See Fig. , where
the index finger contacts the top of the screwdriver, while
the thumb and middle finger form an antipodal grasp on
the handle. To catch the falling screwdriver, the robot can
attempt a power grasp. However, such grasps generally prevent
resumption of the primary turning task. Thus, we define the
desired recovered configuration §q and X as the ones in which
the robot is using a precision grasp. See the visualization in
Fig. [3a] Based on the desired grasp configuration, we define
the desired contact as the fingertips of the index, middle and
thumb finger contacting the screwdriver. The undesired contact
is defined as the contact between all other links of the hand
with the screwdriver. The contact reward 7.ontqct returns the
number of desired contact points.

We model the screwdriver as two connected cylinders: one
for the handle and one for the shaft. OOD screwdrivers have
approximately half the length of the ID screwdrivers.

To evaluate whether the recovered states are favorable for
screwdriver turning, we follow the setup from [39]], attempting
to turn the screwdriver 60°. We assume there exists a motion
planning algorithm to mate the screwdriver with the screw
and reorient it perfectly upright. In practice, we record the
final state of recovery, keep the joint angles and the relative
transformation between the hand and the screwdriver fixed, but
we transform both the hand and the screwdriver so that the
screwdriver is upright. We evaluate the turning performance
via the success rate and the object orientation difference
between the final turning state and the desired state, which
indicates how far the robot turns the screwdriver towards
the goal. A turning is successful if it does not drop the
screwdriver, i.e., the Euler angles of the screwdriver remain
below predefined thresholds.

2) Nut Recovery: We consider the recovery for nut mating
with a bolt. During mating, the robot can easily drop the nut as
the nut mating involves forceful contacts, especially if tactile
sensors are not available.

As in the screwdriver task, successful recovery requires the
robot to catch the nut with a specific grasp. In this case, the
desired contact is defined as the fingertips contacting the side
of the nut and avoiding the top and bottom. Contacts on the
top or bottom will block the nut’s central hole, making it
impossible to mate with the bolt. Any other robot-nut contacts
are defined as undesired contacts.

Additionally, there are cases where the robot appears to
stabilize the nut by using the external support from the bolt.
For instance, the robot might push the nut towards the bolt
while the grasp itself is not stable without the support from
the bolt. We penalize such behaviors in the contact reward:
Tcontact = Trobot_nut — Tnut_bolts where Trobot_nut TEtUINS
the number of desired contacts and 7y, poi+ 1S the indicator
function for nut-bolt contact.

The nut is modeled as a hexagonal prism with a cylindrical

hole, and the bolt is modeled as a cylinder. OOD nuts have
about half the thickness of the ID nuts, making them harder
to catch and requiring more precise finger control.

A recovery is considered successful if the nut is not dropped,
and the nut does not contact the bolt, as the robot must stably
grasp the nut without the bolt support.

3) Baselines: We consider three RL baselines. Both base-
line methods use the same reward functions and RL training
setup as CADRE, but have different inputs: (1) PPO with
object pose observations: it directly takes the observation
o; defined in Sec. as input. This method only has access
to object pose but not object geometries. (2) PPO with
point cloud observations: Reinforcement learning with point
cloud input has been widely used in dexterous manipula-
tion [[13} 38} [1]]. Similar to these methods, we add the object’s
full point cloud Py into the aforementioned observation space:
o} := {qt,x¢, v, Pr}. We use a full point cloud and do not
include the robot point cloud to maintain the same information
as our method. This method has access to the object’s geom-
etry but does not explicitly reason about contact features. (3)
Dexpoint: [28]). Please see Sec. D] for details about the baseline
implementation.

B. Experiment Results

The RL training curves are shown in Fig. }] CADRE
achieves higher rewards than baselines given the same number
of environment interactions. In the screwdriver recovery task,
although the baseline methods have eventually converged, they
fail to match CADRE’s performance.

Each method is evaluated for 50 trials per object. The
average performance is reported in Table [[a) across all objects
and all seeds. We also compute the standard deviation of the 50
trials on a given object, and then average the standard deviation
from different objects and different seeds.

Screwdriver recovery: all methods achieve almost 100%
success rates on ID objects. However, CADRE consistently
performs better on all other metrics. This suggests that base-
lines often use power grasps rather than the desired precision
grasps to catch the screwdriver. On OOD objects, CADRE
still maintains similar performance, with only about 10%
drop in the success rate. While the baseline exhibits a more
significant performance drop. In terms of computation time,
CADRE averages 5.14 x 103 seconds per step, while the
pose baseline averages 8.04 x 10~ seconds. and the point
cloud baseline averages 2.09 x 10~3 seconds. Although contact
feature computation introduces additional overhead, CADRE
remains fast enough to support high-frequency control.

To further evaluate the quality of the recovered state, we
set up the screwdriver turning (primary manipulation task) as
described in Sec. and use the turning algorithm proposed
in [39]. Because the turning algorithm is computationally ex-
pensive, we only run it with the best-performing seed with the
highest success rates for each method. We randomly sample
5 recovery trials per object for the turning evaluation. The
goal is to turn the screwdriver 60 degrees. The turning results
are shown in Table According to the results, CADRE has



Total Episode Reward

0.0

(b) Nut

(a) Screwdriver

(c) RL training curves for screwdriver
recovery

Screwdriver Nut

ko)
—
@ 20
2
&) 15 M
3
Ours 810 Ours
Pose a5 Pose
—— Point Cloud w —— Point Cloud
—— DexPoint g0 —— DexPoint
e

3.0 0.0 0.5 1.0 1.5 _240 2.5
e # Env Interaction Steps

3.0
le8

0.5 1.0 15 _2,0 2.5
# Env Interaction Steps

(d) RL training curves for nut recovery

Fig. 3: Fig. (a) and (b) show the environment step. Three different seeds are used for RL training and the average results are
shown in Fig. (c) and (d). The variance is relatively small as we use a very large batch size during training.

Obj | method [successT| reward! |#contact] #gggte;gjd pos diff(cm)J orn diff|
Screwdriver
CADRE | 99.87% | 1591 £2.04] 291 0.05 | 1.97 £1.72 | 5.16° £ 3.23°
D Pose | 99.47% |10.50 £ 0.74| 1.76 150 |5.35 £1.82| 8.90° £4.55°
Point Cloud| 99.87% |11.75 £ 0.89] 1.92 148 | 3.67 £ 1.17 | 17.27° % 6.60°
Dexpoint |100.00%|11.41 £ 0.54| 1.93 145 | 1.09E0.83 | 16.34° £ 5.84° D
CADRE |89.47% [15.17 £2.45] 2.79 0.09 | 3.04+1.82| 8.25° £6.14° success 7| dist2goal |
Pose | 78.40% | 9.23 £ 1.29 | 1.43 132 |5.03E£2.83[12.91° £ 12.92° CADRE | 80% | 4.73° £3.51°
OOD [Point Cloud| 71.33% | 9.98 £ 1.30 | 1.48 T44 [3.78 £1.64 [20.79° £ 14.12 Pose 12% |47.21° £10.22°
5 3 [} [¢]
(tll?gegpr?;gé) 75.47% [10.48 + 1.35| 1.41 111 |3.39 +1.90 |23.22° + 17.42° P‘]’)‘Z;Si?l'id gggz gg:ggo i }3:330
Dexpoint ° ° OOD
(low hand) | 18:33% | 8:80£2.22 | 119 0.69 | 4.81+1.84 [30.61° & 14.47 CADRE T 767 T A E3 36
Nut Pose 32% 150.81 0 +18.15°
CADRE [98.27% |21.92 £ 2.69| 3.85 015 |410E£239 | 6.47° £ 7.02° Point Cloud| 28% | 47.49° + 7.13°
ID Pose | 71.33% |16.16 £ 2.40] 2.70 025 | 7.63E£1.93[21.58° £ 20.22° Dexpoint | 65% |40.67° & 20.18°
Point Cloud| 78.93% |14.98 £ 2.53| 1.59 041 [ 6.00 £2.67 [35.19° £ 21.35°
Dexpoint | 72.53% |19.03 £ 3.05| 3.01 036 | 5.81£0.79 [13.97° £ 18.62° (b) Evaluation results for screwdriver
CADRE | 92.93% |17.99 £ 4.39] 198 0.17 | 6.50 £3.94 [18.23° £ 19.15° turning initialized from recovered
OOD|  Pose 50.13% [16.44 £ 2.41| 2.89 0.01 7.33£1.66 [19.74° £ 18.45° states.  Dist2goal  represents  the
Point Cloud| 48.67% |14.66 & 3.21 1.55 0.16 6.22 + 2.68 [35.03° £+ 28.81° screwdriver orientation difference
Dexpoint | 42.13% | 20.27 £ 2.77| 3.25 0.08 | 5.70 £ 1.00 [10.55° & 13.64° between the final state of turning and

(a) Evaluation results on unseen screwdriver recovery and nut recovery. All metrics except success

the desired state of turning 60°.

rate are computed for successful trials only. We report two Dexpoint results in the OOD screwdriver

recovery task. Please see Appendix. @] for detailed reasoning.

demonstrated significantly better performance in both ID and
OOD scenarios in terms of both metrics. The performance
drop from ID to OOD of CADRE is much smaller than that of
the baselines. The baseline with pose observation has a better
performance on OOD objects than ID objects. We believe this
is because of its strategy of attempting to place the index finger
on top of the screwdriver. OOD objects are much shorter and
such attempts are easier to achieve, and the index-top contact
is helpful to maintain screwdriver stability.

We also performed hardware experiments to evaluate our
method. Please refer to Appendix [E2] for details.

Nut recovery: we have also observed similar results in
the nut-catching task (See results in Table , with CADRE
outperforming baselines in ID and OOD scenarios. We do not
perform the nut-mating evaluation, mainly due to the complex-
ity of nut-mating with a dexterous hand, which still remains
an open research problem. However, based on our screwdriver
recovery experiments, we hypothesize a correlation between
our evaluation metrics and the performance of the primary
manipulation task.

VI. DISCUSSION AND CONCLUSION

In this work, we propose CADRE, an RL framework that
utilizes an implicit contact representation derived from NDFs.
We focus on the problem of recovering from catastrophic
failure in dexterous manipulation—specifically, recovering from
dropping objects and returning to states favorable for resuming
the primary manipulation task.

We evaluate CADRE on screwdriver and nut recovery tasks.
Our experiments demonstrate that simply providing point
clouds as object geometry observations for RL is insufficient
for learning effective dynamic recovery in contact-rich scenar-
ios. In contrast, CADRE leverages implicit contact features to
improve training efficiency, grasp quality, and generalization
to unseen object geometries.

Beyond dynamic recovery, our results suggest the broader
potential for RL of using implicit contact representations in
contact-rich manipulation. Further extending this approach to
more general settings presents a promising research direction
for our future research.
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APPENDIX

A. RL Training Details

1) Domain Randomization: Since accurately perceiving
fast-moving objects can be challenging in real-world scenar-
ios, catching dynamic objects for recovery needs to handle
significant uncertainties. To address this, we apply domain
randomization [35] to improve robustness. Specifically, we
introduce two types of uncertainty: external disturbances and
perception noise. At each time step, a random external wrench
Wzt 1S applied at the center of the screwdriver, and random
perception noise € sampled from a uniform distribution is
added to the object’s pose and velocities. For the external
wrench W,y := {feut, Text }» We randomly sample:

o the force f..;

U(—1.5N, 1.5N).
e the wrench 7. from a uniform distribution of
U(—0.01Nm, 0.01Nm).

Perception noise € consists of position €,,, and orientation
noise €,.,. We sample the position noise from &/(—1cm, lcm)
for each dimension. For orientation error, as orientations are
represented as quaternions, we randomly sample each noise
dimension from U/(—0.01,0.01), add it to the quaternion and
renormalize to ensure a valid quaternion.

2) Environment Initialization: Screwdriver Recovery:
During training, the robot is initialized with a predefined
configuration ¢, which is assumed to be favorable for the
turning task. This initialization is reasonable given that an
ideal turning policy normally only controls the robot toward
such favorable configurations. The screwdriver’s tip position is
randomly sampled within a small range, since in practice the
screwdriver is usually mated with the screw, and its orientation
is sampled from a predefined distribution. If interpenetration
between the robot and the object occurs at the initial state,
we keep the object fixed and adjust the robot configuration
accordingly. During evaluation, we change the object orien-
tation initialization to make the task more challenging: we
only initialize the object in directions falling away from the
hand (rather than falling towards the hand). This is because
in cases where the object falls towards the hand, the robot is
able to catch it without any movement. We focus on the more
interesting setup where the robot requires active movement for
recovery.

When evaluating on OOD objects, we lower the initial hand
height by 3 cm, except for the Dexpoint method, where we
have experiments for two different heights (see Sec. [D] for
details). This is because the OOD screwdrivers are shorter and
the distance the robot needs to travel to make contact is longer.
If initialized with the original height, it is very challenging for
the robot to move fast enough to catch the screwdriver before
the screwdriver drops. Moreover, the original hand height will
create a large gap between the robot and the OOD screwdriver,
which is an unlikely configuration during screwdriver turning,
and one from which our recovery policy would not typically
be triggered.

from a uniform distribution of

L

Fig. 4: Key Points visualization used for extracting contact-
aware grasp feature.

Nut Recovery: The initialization for nut recovery is similar
to the screwdriver recovery task. The only difference is that
we keep the training and evaluation distribution the same as
there exist no trivial initial setups that we shouldn’t include in
the evaluation.

B. Parameters for Generating Objects

The parameters are shown in Table [l For OOD object
design, we specifically choose shorter screwdrivers and thinner
nuts as those choices present significant challenges, where the
desired contact regions are smaller and generally require more
precise finger control.

C. Key Point Definition

To illustrate the key points used for extracting the contact-
aware grasp feature, we manually annotate the key points,
as shown in Fig. 4] Specifically, we directly select the root
point of each link as the corresponding keypoint. It is worth
noting that the keypoints are not required to lie within the
actual contact regions. Since NDF provides an implicit contact
representation, indicating how far each keypoint is from the
object’s surface, regardless of direct contact.

D. DexPoint Experiments

Similar to our method, Dexpoint [28] aims to leverage
contact information and improve generalization across object
geometries. The key components of Dexpoint include: (1)
augmenting the observation with an additional imagined point
cloud of the robot, and (2) incorporating contact-based reward
functions during RL training.

Dexpoint assumes access to the robot’s geometry, so we
render a point cloud for each fingertip and the palm, and
concatenate it with the object’s point cloud. Unlike the original
Dexpoint paper, we do not use the observed point cloud, i.e.,
the point cloud from a depth camera, as other methods in our
experiments do not have access to such observations. We also
retain our original reward function, which already includes
contact-based reward terms similar to those in DexPoint.

In OOD screwdriver experiments in Table Tl we present
two sets of Dexpoint experiments using different initial hand
heights: low hand corresponds to the same hand height used
by other methods during OOD evaluation, while high hand
refers to the original hand height used during RL training.
Although lowering the hand height benefits other methods,
it significantly reduces the success rate of Dexpoint. This



Screwdriver Nut
handle r handle 1 shaft r shaft 1 inner r outer r thickness
ID U(1,3) U(7,14) | U0.4,1.4) | U(8,10) | U(1,2.5) | U(3,4) U(3,5)
OOD | U(1.5,4) | U(4,10) | U(0.4,0.8) U(4,6) U(1,2.5) | U(3,4) Uu(1,3)

TABLE II: Distribution used for generating object geometries. r: radius, I: length. ¢/ means uniform distribution. All units are
in centimeters. OOD objects are generally shorter(screwdriver) or thinner(nut) than ID ones.

is mainly because Dexpoint learns a catching strategy that
involves quickly moving the hand forward. When the hand
is lowered, the palm is more likely to collide with the blue
pillar holding the screwdriver, leading to failure. Therefore, we
also report the results using the original (high) hand height,
which better accommodates Dexpoint’s learned strategy. For
evaluating the subsequent screwdriver turning, we choose
high-hand results.

Though CADRE generally outperforms Dexpoint in most
metrics, in terms of the primary metric of success rate,
Dexpoint performs comparably to other baselines. It also has a
better performance in the downstream screwdriver turning. In
the nut recovery task, it shows better reward and other metrics
on contact quality than other baselines. Compared to the tasks
evaluated in the Dexpoint paper, our tasks are more dynamic
and demand greater precision in contact configurations, which
may explain why Dexpoint does not consistently outperform
other baselines in our setting.

E. Hardware Experiments

The main objective of the hardware experiment is to eval-
uate whether we can successfully transfer the highly dynamic
recovery behavior learned in simulation to a real-world setup.
We only focus on the screwdriver recovery task in our hard-
ware experiments. The hardware experiment does not focus on
generalization abilities across object geometries. Thus, we use
an unseen screwdriver that falls within the training distribution
for our hardware experiment.

1) Experiment Setup: We use the Vicon motion capture
(mocap) system to estimate the state of the screwdriver. Since
the hardware system has different parameters from our previ-
ous simulation environments, such as stiffness and damping
of the PD controller, we retrain all methods to match the
parameters of the hardware.

To enable deployment in the real world, we distill an
open-loop policy from the closed-loop RL policy. Closed-
loop execution of a highly dynamic manipulation policy is
particularly challenging because of (1) Latency: Our system
exhibits approximately 50 ms of latency between sending con-
trol commands and receiving the corresponding observation
update. Such millisecond latency is usually negligible in many
quasi-static tasks, but will lead to instability in our highly
dynamic tasks; and (2) Occlusion: When the robot attempts to
catch the screwdriver, its fingers will often block the mocap
markers, causing loss of object state information.

Additionally, although mocap provides a high-frequency
ttracking of the object, alternative perception methods, such
as AprilTags [27], usually suffer from slower update rates
and motion blur resulting from fast object movements. An

(c) Point Cloud

(d) Dexpoint

Fig. 5: Example sequences from the hardware experiment.
Each frame is approximately 0.1 seconds apart.

. . #desired contact | #undesired contact
suce rate (succ only)T (succ only)|
CADRE 100% 2.93 0.27
Pose 93.33% 1.36 1.71
Point Cloud 86.67% 2.31 1.85
Dexpoint 86.67% 1.85 2.15

TABLE III: Distilled open-loop policies are evaluated for 15
hardware trials per method. The number of desired contacts
and undesired contacts is computed only for successful trials.

open-loop policy is likely to mitigate these issues and increase
compatibility with a broader range of perception systems.

To distill the open-loop policy, we configure the simulation
environment to match the geometry of the screwdriver used
in the hardware experiments. We collect 10,000 successful
rollouts from the closed-loop policy, and train a supervised
open-loop policy that takes the initial observation as input and
outputs a sequence of actions for the entire trajectory. Though
open-loop distillation will introduce additional action errors
and potentially non-smooth trajectories, we demonstrate in our
experiments that CADRE is still able to achieve a reasonable
recovery behavior.

One of the main challenges in the hardware experiment is
resetting the system to a state where the screwdriver is about
to fall. As the error detection is not the focus of this work,
we manually create such a falling scenario: we first manually
position the screwdriver so that the robot can grasp it. To
initiate the drop, we command the robot to open its hand for a
short, fixed duration. The recovery policy is then triggered. To
eliminate bias from manually setting the screwdriver’s initial
pose, we anonymize the methods during each trial: the method
under evaluation is randomly selected and not revealed to the
experimenter until the end of this trial.

2) Experiment Results: The quantitative results are shown
in Table ] and the qualitative results are shown in Fig. [3

Our method demonstrates a better performance in the hard-



ware experiments. However, there is still room for improve-
ment, including reducing action jerk, achieving better contact
configurations, and minimizing applied robot forces for safety.

F. Interpretation of the Metrics in Our Experiment

We present six evaluation metrics in our experiments. Here
we clarify their significance.

Success rate is the primary metric—if the object is not
caught, evaluating the quality of final catching states is not
relevant. Reward and the number of desired contacts are
most indicative of the recovery quality, as we have seen in
our screwdriver experiments that they are closely related to
the downstream task performance. Position difference and
orientation difference are secondary, since the robot can use
motion planning to reposition and reorient the object after
catching the object.

G. Limitations

While CADRE demonstrates the ability to generalize across
different geometries, the underlying NDF structure only fo-
cuses on geometry information for generalization. However,
variations in geometries will also lead to different dynamics.
For example, a grasp on an unseen object that shares similar
grasp features with a force closure grasp on a known object
might not result in force closure.

Additionally, dynamic manipulation with precise control
introduces significant sim-to-real challenges. Specifically, Fac-
tors such as system latency, gravity compensation errors, and
policy computation time, which are often negligible in quasi-
static scenarios, can have a substantial impact on performance
in highly dynamic recovery tasks. While CADRE can suc-
cessfully catch a falling object in our hardware experiment,
there remains room for improvement in achieving more precise
desired contact configurations, e.g., by making the policy
aware of the system latency and dynamics discrepancies. We
will focus on addressing the limitations in our future work.
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