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Abstract—Autonomous robots operating in complex, unstruc-
tured environments face significant challenges due to latent,
unobserved factors that obscure their understanding of both their
internal state and the external world. Addressing this challenge
would enable robots to develop a more profound grasp of their
operational context. To tackle this, we propose a novel framework
for online learning of hidden state representations, with which
the robots can adapt in real-time to uncertain and dynamic
conditions that would otherwise be ambiguous and result in
suboptimal or erroneous behaviors. Our approach is formalized
as a Generalized Hidden Parameter Markov Decision Process,
which explicitly models the influence of unobserved parameters
on both transition dynamics and reward structures. Our core
innovation lies in learning online the joint distribution of state
transitions, which serves as an expressive representation of la-
tent ego- and environmental-factors. This probabilistic approach
supports the identification and adaptation to different opera-
tional situations, improving robustness and safety. Through a
multivariate extension of Bayesian Online Changepoint Detection,
our method segments changes in the underlying data generating
process governing the robot’s dynamics. The robot’s transition
model is then informed with a symbolic representation of the
current situation derived from the joint distribution of latest
state transitions, enabling adaptive and context-aware decision-
making. To showcase the real-world effectiveness, we validate our
approach in the challenging task of unstructured terrain naviga-
tion, where unmodeled and unmeasured terrain characteristics
can significantly impact the robot’s motion. Our experiments
reveal significant improvements in data efficiency, policy perfor-
mance, and the emergence of safer, adaptive navigation strategies.
Accompanying video: https://youtu.be/VKR18WaSCAKk.

This manuscript summarizes our work on online and un-
supervised latent factor representation learning. For detailed
proofs, additional results and in-depth analysis, refer to: [36].

I. INTRODUCTION

Reliable robot deployment in unstructured and dynamic
environments, requires systems that adapt to unforeseen chal-
lenges and operate effectively under uncertainty. Consider, for
example, an Unmanned Ground Vehicle (UGV) navigating
steep and rugged terrain. Such a robot may become immo-
bilized due to unexpected factors, ranging from unmodeled
terrain properties to variations in its own internal dynamics.
These factors are inherently difficult, if not impossible, to
anticipate exhaustively [10, 28, 17, 50, 56, 55]. This challenge
is further exacerbated by the impracticality of equipping robots
with every conceivable sensor and analysis algorithm needed
to fully capture the world’s and robot’s full state in all sce-
narios. Consequently, robots must learn to operate effectively
using only partial information derived from their observable
state—the limited set of measurements and estimates available
in real time. This raises the need for adaptive mechanisms

Figure 1: Motivating Example. When the robot has in-
complete state information, the same action, a, can yield
significantly different outcomes. In this example, unmod-
eled terrain types—factors absent from the state and tran-
sition model—affect an UGV’s response, resulting in dis-
tinct changes in position and heading (Az, Ay, and A,
respectively) for the same control action (linear and angular
velocity). Environment images generated with Gemini Al

capable of inferring and representing the hidden aspects of
the robot and its environment to inform decision-making and
enhance resilience in uncertain conditions [34, 13, 25, 23].

Furthermore, when a robot relies on partial information to
operate on a complex environment, the risk of ambiguous
scenario representation becomes significant [35, 41, 5]. Such
ambiguity is undesirable, as it increases uncertainty during
decision-making, often leading to suboptimal plans and, in
some cases, unsafe or hazardous behaviors. This challenge
is exemplified in Figure 1: a UGV with incomplete state
information—lacking a (robust) scene interpretation module
to detect the terrain type it is traversing—executes an action
from what appears to be the same state. However, the outcomes
of these actions differ drastically, revealing a discrepancy that
cannot be attributed solely to aleatoric errors (those arising
from process or observation noise). This highlights the critical
need for robust methods to infer and resolve hidden state
ambiguities to ensure reliable robot operation.

To address this, we propose an online, unsupervised frame-
work for learning compact representations of the unmodeled
and unobserved latent factors that give rise to such ambi-
guities. Our method balances representation capacity, data
efficiency, and minimal inductive bias by learning, in real time,
the joint distribution of state transitions—termed the robot’s
“situation”—which captures both its internal state and the
prevailing environmental conditions. By extending Bayesian
Online Changepoint Detection (BOCD) to the multivariate
case, the robot continuously models its current situation,
detects abrupt changes, and adapts its behavior accordingly,
all without privileged information or multi-stage training, in
contrast to recent approaches [29, 26, 27, 42, 32]. Leveraging
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only proprioceptive sensing, this approach yields an expressive
probabilistic representation of the underlying data-generating
process (UDGP), enabling reliable task execution in uncertain,
unstructured environments.

Our main contributions are threefold. First, we present
an efficient method for online robot adaptation based on
identified latent factors, via a multivariate extension of BOCD
to estimate the transition distribution in real time. Second, we
demonstrate how these situation distributions can be mapped to
symbolic representations, granting the dynamics model access
to relevant context for adaptation. Finally, we validate our
framework on a UGV navigating unstructured terrain, showing
that our situationally-aware (SA) dynamics model, trained
via Model-Based Reinforcement Learning (MBRL), yields
superior, data-efficient policies and exhibits emergent adaptive
behaviors that improve navigation safety and effectiveness.

II. RELATED WORK

We proceed to cover policy and dynamics learning with
learned auxiliary representations as well as unstructured terrain
navigation. An extended version is available at: [36].

RL with Learned Auxiliary Representations. In model-
free RL, approaches like Lee et al. [29] and Rapid Motor Adap-
tation (RMA) [26, 27] utilize temporal convolutional networks
or environmental factor encoders to infer latent representations
from proprioceptive history or privileged information. These
representations are then used to inform control policies, often
requiring multi-stage training processes and sometimes relying
on a teacher policy or an adaptive curriculum. Follow-up
works, such as [42, 32], extend this concept to in-hand object
rotation and manipulation using depth perception. In contrast
to these methods, our approach directly learns representations
from proprioception without needing privileged information or
multi-stage training, allowing for immediate symbol detection
and real-world deployment without further fine-tuning. Within
model-based RL, researchers address challenges like high-
dimensional state spaces and compounding error. Havens et al.
[20] propose compressing the state space to avoid learning
unimportant features, while [46, 47] learn “’predictable behav-
iors” and corresponding dynamics to facilitate model-based
planning in real-world scenarios. Lee et al. [30] introduced
Context-aware Dynamics Models (CaDM) that learn a context
encoder and multiple dynamics models conditioned on a latent
vector encoding dynamics-specific information. Our method
also falls under the model-based paradigm, but it differs
by employing a single dynamics model that adapts to all
contexts, rather than requiring multiple specialized models.
Furthermore, our structured symbolic representation explicitly
captures the UDGP of the dynamics, offering a more inter-
pretable alternative to unstructured latent representations.

Unstructured Terrain Navigation. We validate our ap-
proach through the challenging task of unstructured terrain
navigation, where unmodeled terrain characteristics signifi-
cantly impact robot motion. This field is typically addressed
from two perspectives: adaptation and path planning. Adap-
tive methods, such as those by Xu et al. [54] and Wang et al.

[52], focus on enabling robots to recover from unexpected
scenarios and manage uncertainty. Terrain-aware approaches
like [49, 50] learn control offsets for consistent navigation.
Conversely, path planning methods [57, 21, 31] analyze terrain
using robot sensors to find safer trajectories, sometimes with
a focus on risk-awareness [48, 3, 4]. Learning-based methods
also consider ground-robot interaction and surface data [44].
Our method intersects both perspectives by developing dynam-
ics models more robust to terrain challenges, which are then
used for local motion planning, enabling safe traversal under
partial state information.

III. PRELIMINARIES
A. Generalized Hidden Parameter Markov Decision Process

Perez et al. [39] present GHP-MDPs to account for un-
observed, latent parameters which influence the dynamics
and reward function. These latent factors are not directly
observable by the agent, but the agent must infer them through
interaction with the environment to optimize its policy.

Definition 1. A Generalized Hidden Parameter MDP (GHP-
MDP) is defined by a tuple Mgup = (S, A,0,T, R,~y), where
S is the set of observable states and A is the set of actions
available to the agent. © is the set of latent variables that
are not observable by the agent but influence the system’s
dynamics and rewards. T : S x © x A x S — [0,1] is the
transition function which gives the probability of transitioning
from state s to state s’ under action a and hidden parameter
0. R:Sx0OxA — Ris the reward function. And the discount
factor ~ € [0,1] modulates the agent’s desire for immediate
and future rewards.

B. Bayesian Online Changepoint Detection (BOCD)

The problem of changepoint detection is concerned with
determining the point where the observed data distribution
changes in an ordered set of measurements, such as in time-
series [12]. BOCD was introduced by Adams and MacKay [1]
to tackle this problem by framing it as an estimation of the
posterior distribution of the current “run length” r;, meaning
how likely it is that the measurement at time-step ¢ belongs to
the same data generating process that started r; timesteps ago;
while also obtaining the parameters 7 defining such process.

Intuitively, BOCD continuously monitors a data stream to
identify points where the underlying data distribution changes.
It starts with a prior belief about where changes might occur
and updates this belief by evaluating how well the current data
fits different scenarios of changepoints (segment/run lengths).
At each time step, the algorithm uses the new data to adjust
the likelihood of potential changepoints, incorporating prior
knowledge and observed evidence. The method recursively
updates this distribution to assess the existence of changes
in the UDGP of the current segment.

Formally, the method assumes that the sequence of observa-
tions x1,x9, ...,z can be segmented into non-overlapping
intervals, where a changepoint corresponds to the point x;
marking the transition between two adjacent intervals. The set



a:ET) contains the points estimated to belong to run r;. Further-

more, the data within each interval p is i.i.d. from P(z|n,),
and the parameters 7,,p = 1,2,... are also i.i.d. Note that
the last assumption is about the parameters of the underlying
distributions describing the data generating process of each
segment. Finally, we should be able to compute the predictive
distribution P(xs11|r+, :ny)) and define a conditional prior on
the changepoint P(r¢|r;—1). See Appendix A for more details.

IV. METHOD

We model online the changes in the distribution governing
the robot’s transition dynamics. These changes encapsulate the
influence of latent, unobserved factors—such as unmeasured
variables or emergent phenomena—that are challenging to pre-
dict or exhaustively anticipate. With the learned representation
the robot refines its transition model, improving downstream
performance. Due to space considerations, refer to [36] for
in-depth descriptions and proofs.

A. Online Transition Distribution Modeling

The transition distribution 7'(s, a,s’) in a MDP defines a
conditional probability distribution that specifies the likelihood
of transitioning to a new state s’ given the current state s and
action a. That is, T(s,a,s’) = P(s’ | s,a). In particular,
P(s' | s,a) x Pr(S; = s,A4; = a,S:41 = §'). However,
as previously noted, in real-world applications, estimates of
P(s' | s, a) usually fail to accurately capture the true dynamics
of the world. Generally, this shortfall arises from latent,
unobserved factors—such as unmeasured variables or phe-
nomena for which the robot lacks the necessary sensors—that
significantly impact state transitions. Thus, our key insight
is that by modeling online the joint transition distribution
Pr(S; = s,A; = a,Si41 = ') that best explains the
UDGP governing the current state transitions, we can account
for the latent factors that influence the world dynamics and
consequently improve performance on downstream tasks.

To achieve this, we break the problem of online transition
distribution modeling into determining local joint transition
distributions. By “local”, we mean around the latest set or
trajectory of states experienced by the agent. For example,
an UGV stuck in a slippery area during hill climbing will
estimate a different local joint transition distribution than the
same robot when it is moving over a flat and smooth sidewalk.

We represent the local dynamics 77 of the robot via a
multivariate Normal distribution parameterized by its mean
vector p and precision matrix A (inverse of the covariance):
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By focusing on the transitions within a neighborhood of states,
the multivariate Normal distribution strikes a balance between
representational power and computational efficiency.
Specifically, we use Eq. (1) to model the joint distribution
of the (state, action, next state)-tuples, which we call the sit-
uation of the robot from now on. Thus, & = [s¢; ay; st+1]T S
Re=+datds - which corresponds to concatenated state s; €
R? action a; € R% and next state s, ; € R% vectors. This

Ty (s, A) =

will describe the situation of the robot, as we will be able to
distinguish via the next state components of 77 whenever the
same action under similar conditions (states) leads to different
outcomes. Since 17, encodes the effect of the unknown factor,
it can inform 7" and adapt to the detected dynamics change.

However, to effectively model the local dynamics using Eq.
(1), we need to estimate 7 = {u, A} online and simultane-
ously detect when a different 17’ describes the current situation
of the robot better. For this, we extend BOCD to a multivariate
setting and apply it for online and unsupervised discovery of
the multiple sets 1, as shown next.

1) Multivariate BOCD: Assume a process with measure-
ments arriving one at a time. For example, a robot’s state
estimate. Each of these incoming data points can be considered
as an observation from a statistical distribution. We introduce
a multivariate extension of BOCD to detect and model online
the UDGP of the incoming data points. Formally, the data
points are assumed to be drawn from a multivariate normal
distribution characterized by a set of parameters n = {u, A}.

As a result, at time ¢ = N, we have collected a set of

observations D = {x; : x; Y N(n)}Y,. This means:

p(Dlp, A) = [] N(@ilp, A) )
x, €D

B | A| n/2 1 n TA
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We are interested in detecting the time ¢’ > ¢ when the
incoming data no longer comes from A/(n) and determine
the new values 1’ that describe the new UDGP.

Since we want to understand when the parameters 7 of
the UDGP have changed, we need to define a prior for them.
For this, we propose the Normal-Wishart distribution. This
conjugate prior is particularly useful because it allows for
closed form belief updates for € R? and A € R¥X? as
more data becomes available. It is defined as follows [37]:

_ Lo K T
p(p,A) = EIA\ exp (*5(/%#0) A(H*Mo))
A FTAD/2 exp (;tr(TlA)) . 3

where 7 = (%)d/2 |T|%/229%/2T 4(x/2) is a normalizing
factor and tr(-) denotes the trace of a matrix.

Essentially, the Normal-Wishart prior places a Normal prior
with mean p, and scale x 'A=" on p and a Wishart prior
with scale matrix 7" and vy degrees of freedom on the preci-
sion A. Its conjugacy and parameters (rq, ) yield flexible,
assumption-light modeling of multivariate normals [9, 37].

With the sampling model Eq. (2) and prior Eq. (3) deter-
mined, we proceed to make the connection to BOCD.

Specifically, we will determine the closed form solutions
for the growth probability Eq. (17) and changepoint probability
Eq. (18), from which we can recover the run length probability
Eq. (19). We assume that the prior on the changepoint prob-
ability is Pyap(g) ~ geometric(\). This makes the process
memoryless and the hazard function constant at H (1) = 1/,
where )\ is the expected time between changepoints [1].



Lemma 1 (Growth and Changepoint Probabilities). Let
x; be the observation received at time t. Let m(") =
{m; (r) T(T) (T),Kli ) t_y, be the parameters of the UDGP
(r ) that started at time tC; < t. Then,

o The Growth Probability, or probability that we stayed in

the same UDGP, at time t is:

P(ri=ri1+1,x,,4) = “4)
A—1

TP(thlvwtcp:tfl)N(th|Nz(sr_)1aAg?ﬂ-

o The Changepoint Probability, or probability that we moved
to a different UDGP, at time t is:

P(ry =0, 33%,; t) = )]
Tt—1

)\ Z P T, OStht 1) (Zﬂt|[,t(r) A(T)) O

Subsequently, as new observations arrive, we need to update
the run length distribution to determine whether or not the
UDGP has changed. Next, we describe in Lemma 2 the
efficient and optimal closed-form solution.

Lemma 2 (Online Distribution Parameters Learning). Given
the ordered set of situation parameters n") and a new

; ; (r) p(r) (r) ()
observation x, the posterior parameters p; °, Ty 7, v, 7, Ky
for the current UDGP are:
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where S = Zf i(w — @) (x; — )" and A = (HET)1 -
) () — )" .

2) Online Situation Modeling: To determine when T7,
changes we use our multivariate BOCD. Algorithm 1 describes
the process: we first determine if we changed situations
(Lemma 1) and then model the current situation (Lemma 2).

Algorithm 1 Online Situation Modeling (SM)

1: Get @y = [st—1;at—1;5¢] "

2: Get the Growth Probability, j = Eq. (4)

3: Get the Changepoint Probability, k = Eq. (5)

4: Update parameters m),_, according to Egs. (6) — (9)
5: situation_change = 1(k > j)

6: return situation_change, n,

B. Online Situation Identification
To estimate 77, (Eq. 1) online we use the Maximum
Likelihood Estimate (MLE) of 17 on the current run data
(r) The estimated parameters are added to a set W of
1dent1ﬁed situations. To determine the varying window size

of the sequence of past state measurements that make a;( " w
add incoming state estimates to acg ") until a new changepomt
resets it to the empty set. The Mahalanobis distance [33] let

us identify which situation ¢ € ¥ the robot is experiencing:

M) = | o X ¢ — ) A = ) |
x; Gm
(10)
where ¢ = (g, Ay). In this way we can estimate how far

each point in the current run data ZB( ") is to the distributions
describing the detected local transition models 77.. Then, using
a threshold 7 we determine if the distribution of the closest
situation is appropriate to represent the current local dynamics
of the robot. If it is not, we create a new situation ¢ = (u, A)
that we add to W during training. At test time, we use the
closests experienced situation in W to the one the robot is
currently experiencing. Algorithm 2 describes this.

Algorithm 2 Online Situation Identification (SI)

: Get @y = [5¢—1;a4—1;5¢)
: Get data from current run x,
: situation_change,n, < SM(wt,m§T>,nt_1) > Alg. 1
DT < argming g M () > M(¢) = Eq. (10)
: if situation_change then
if M (g, Ay+) > 7 and training then
Add (p,A) + MLE(z\") to ¥ > Create Situation
= (. A)
end if
(T) 0

(r)

PN YR LN

._
@ v

> Variable-sized window of past states

—_

: else

Add z; to mE”
: end if
: return Y™

—_
BN

C. Situationally-Aware Dynamics

We proceed to leverage the modeled situations to refine the
transition function 7. As discussed before, we argue that for
effective unstructured terrain planning and control we need to
account for the hidden state. We do this by representing the
hidden latent factors via a parameter § € © that informs T
about the unmodeled world characteristics that also affect the
prediction. In such cases, we have a GHP-MDP with transition:

T(s,0,a,8") =Pr(Siy1 =8| S =5,0;,=0,A; =a),
(11
where S, Oy, A; and Sy are random variables representing
the state of the world, the current representation of the latent
factors and the actions taken by the agent. We model the right-
hand side of Eq. (11) as an ensemble M,,, : SxOx A — S of
m probabilistic (Gaussian) neural networks. This architecture
choice estimates the predictive distribution over the next state
and considers the epistemic and aleatoric uncertainty [6].
1) Representing the Local Transition Model: To provide
M, the current situation information we need to map each
1 € ¥ to a symbol 6§ € O. For this, we define the function



® : ¥ — O. In our case, we need © to distinguish between
multiple instances of the local distribution 77, (Eq. 1), all of
which belong to a family of distributions that share a common
form but vary in their parameters.

We find that the Moment Generating Function (MGF) pro-
vides an useful tool for this purpose, as it uniquely character-
izes a distribution [8, Theorem 1]. In general, for a multivariate
Gaussian random vector X ~ N(u,X), the MGF is defined
Mx(t) = Elexp (t'X)] = exp(t'p+ t"St). Thus, to
symbolically represent the current situation ¢ we use its MGF,
with a fixed, nonzero t € R?, as follows:

©; (1)) = log Mx (t;4) =t gy, + %tTAglt, (12)
where we apply the log function for numerical convenience.
Although it could happen that for a given ¢ the representations
of two situations would end up being equal, this is highly
unlikely and we did not experience any such collisions. Then,
whenever M,,, is being called, we augment the robot’s state
with the current situation’s symbol 6. Note that the current
situation is constantly updated as the output from Algorithm 2,
which is executed every time a new observation x; is obtained.
2) Dynamics Learning: The model M,, is learned by
alternating exploration and exploitation, as is common in the
MBRL framework. Throughout training we append the set of
tuples {(s;, 0;, a;, si+1)}£\f:"‘l, where N, is the number of steps
in the episode, to the replay buffer R. Note that different
from traditional MBRL, we include the representation 6; of
the current situation. The collected data is then used to train
the dynamics model M,,. In subsequent episodes, the agent
uses the updated model to make better informed decisions.
Given that the period of time the robot experiences in each
situation is different, the replay buffer R will naturally have
an unbalanced sample of situations. Thus, to ensure that the
dynamics M,,, are learned appropriately for all situations ¢ €
W, we introduce a loss weighted by the cardinality of each
situation. Specifically, we want to minimize the Negative Log-
Likelihood (NLL):
[R|
L(0) = = > w(0;) (log 67 |1 — will3 +log 67) ,
i=1

where fi; and 67 are the predicted mean and variance, and

y; is the measured outcome, and each prediction is weighted
by w(6;) = [RI/ SR 1(6; = 6;), where 1(6; = 6;) is an
indicator function equal to 1 if §; = 6; and O otherwise. This
frequency-weighted loss enhances the model’s focus on rare
values of #;, encouraging balanced learning across all samples.

3) Planning and Control: We use our SA dynamics model
M, together with the Model Predictive Path Integral (MPPI)
method [16]. The expected return is computed based on
the predicted future states while assuming that the situation
symbol 6 remains constant throughout the roll-outs. To select
an action, MPPI finds every timestep a solution to:

(13)

Figure 2: Using the learned SA Dynamics Model the robot
can successfully traverse multiple unstructured terrains.

H-1
}yqq = arg min Z (I84+n = Sgoatll2 + pPB(S¢41)) »

Qt:t+H h=0

(14)
where 5; denotes the predicted state at time ¢ + h, Sgoal 1S
the goal state, p > 0 is a weight hyperparameter and B(3;;)
is a log-barrier function for safe navigation around obstacles

(Sobs): B(§t+i) = - log ||<§t+h - Sobs”Q'

V. RESULTS

We proceed to evaluate two questions: (Q1) Does SA enable
effective online hidden state representation learning? and (Q2)
Can we use SA for faster dynamics learning?.

To evaluate latent factor identification, the observation space
is limited to proprioceptive odometry, excluding explicit envi-
ronmental cues such as terrain or friction. These factors must
be implicitly encoded in the hidden state, enabling the model
to adapt to varying conditions without external sensory input.
More results are available in Murillo-Gonzalez and Liu [36].

Experimental Setup: The state space s € R'? corresponds
tos=[p e v Q]T, where p = [z,9,2] € R? is the
robot’s pose, e = [¢,(,7] € R? are the roll, pitch, and yaw
angles (orientation), v = [v,,vy,v,] € R? are the linear ve-
locity components, and Q = [w,, w,,w;] € R? are the angular
velocity components. The action space a = [vcmd wcmd]T,
where vema € [—1,1] and wema € [—73, 5] includes the
commanded linear and angular velocities, respectively.

The situation space x € R?® corresponds to the concatena-
tion of state and action vectors x; = [s;—1; @y—1; St

For more details refer to Appendix B.

Evaluation Environments: We validate our approach on
unstructured terrains shown in Figure 2, where latent surface
features influence the robot’s motion. We use Clearpath’s
Inspection World [7] in Gazebo [24] for simulation.

Baselines: To highlight the benefits of SA, we compare
our approach against several learning-based and physics-based
baselines. These include CaDM [30], a context-aware dynam-
ics model similar to ours, and PE+LSTM, which uses an
LSTM for parallel hidden state recovery. We also benchmark
leading MBRL methods like TD-MPC2 [19] and PETS [6],
along with CDL-CMI [53], a causally-inspired dynamics
model. For a comprehensive comparison, we include policies
trained with model-free methods (PPO [45], SAC [18], TD3
[15]) and a classical Dubins physics-based model [11].
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Figure 3: Dynamics Learning Results. Our model achieves
a higher reward and completes the tasks in less time. (Left)
Training task reward. (Right) Mean =+ std. dev. of the time to
reach the task waypoints. Experiments repeated five times.
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Figure 4: PCA decomposition of the identified Situations (26-
dimensional local transition distributions).

A. Situationally-Aware Dynamics Learning

The SA module processes the 26-dimensional situation
observations to return the current hidden state representation
6 € ©, symbolizing the robot’s local dynamics. The learned
dynamics model M,, then uses ¢, along with the robot’s
orientation and commanded velocities to predict state changes.

1) Training Results: To train the model and baselines we
design a sparse waypoint mission in the Inspection World
simulator shown in Figure 5. However, the region around
waypoint 3 is steep and makes the robot slip whenever it tries
to go there directly. This makes it necessary to come up with a
non-trivial plan. To trade-off exploration and exploitation, an
episode ends if the robot takes longer than 90 seconds to reach
the next waypoint. We train sequentially on a single simulator.

Figure 3 shows that the situationally-aware dynamics enable
faster learning and higher average reward (number of way-
points reached). Additionally, on average our model is able to
complete the task faster and, more significantly, it is the only
one able to complete the task within 50 episodes.

Quantitatively evaluating the performance of online hidden
state representation learning is inherently challenging for this
task, as the true hidden state and its transitions are naturally
unobservable. To address this, we qualitatively assess the
performance of the situational awareness module through
two complementary analyses. First, we examine whether the
module identified meaningful situation changepoints during

the robot’s operation, as illustrated in Figure 7. The results
show that the model effectively segmented the local transi-
tion dynamics under varying patterns, accurately capturing
and representing the changes in the dynamics. Second, we
visualize the diversity of learned hidden state representations
by mapping the 26-dimensional local transition dynamics 77,
identified onto the first two principal components, as shown
in Figure 4. This visualization reveals distinct clusters corre-
sponding to different situations, demonstrating that each rep-
resentation encodes unique patterns in the transition dynamics
without collapsing into a single, generalized representation.

B. Situationally-Aware Unstructured Terrain Navigation

We extensively evaluate our SA dynamics model in the
real-world, comparing it against the physics-based Dubins
model and the strongest learning-based baselines in simulation.
Notably, we do not perform additional fine-tuning to go from
simulation to reality. As illustrated in Figure 2 and in the
video (https://youtu.be/VKR18WaSCAKk), our method reliably
handles various challenging terrains, demonstrating strong
robustness and adaptability.

Emerging Behaviors. A highlight of the real-world exper-
iments is the emergence of behavioral patterns that improved
safety and performance. For instance,

e Backing Up: Whenever forward motion is impeded, the
robot backs up and moves with a slight orientation change
to overcome the terrain irregularities. This mirrors the
behavior of human drivers when their vehicles get stuck.
The clips at the: 1:00, 1:27 (trial 4), 2:06, 2:36 (trial 4),
3:30 & 5:25 (rocks) minute marks have evidence of this.

o Velocity Control: At minute 4:00, the robot maintains a
slower pace while navigating downhill and then deliberately
accelerates (minute 4:15) upon a situation change-reaching
safer, more stable terrain.

e Trajectory Smoothness: On very rugged and dangerous
terrains the robot followed curved patterns (see the clips
at minutes 1:42, 2:22 & 3:18). But, when the terrain was
not as rugged and steep, the robot approached its targets
directly, relying only on the velocity control to maintain its
integrity (4:00, 4:22 & 5:22 minute marks).

It is important to clarify that during training we did not try to
enforce learning of such patterns in any way. We hypothesize
these behaviors results from situation changes that lead the
optimization process carried out by MPPI to be constrained
according to the dynamics of the new situation, thus generating
new and diverse action plans.

VI. CONCLUSION

We presented a framework for adaptive decision-making
by modeling latent world- and ego-factors through the joint
distribution of state transitions, or the robot’s sifuation. By
extending BOCD to a multivariate setting, our method enables
online, unsupervised adaptation without privileged data. Re-
sults show improved performance in discovering latent factors
while maintaining efficiency and reducing the inductive biases.
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APPENDIX
A. Bayesian Online Changepoint Detection (BOCD)

The problem of changepoint detection is concerned with
determining the point where the observed data distribution
changes in an ordered set of measurements, such as in time-
series [12]. BOCD was introduced by Adams and MacKay [1]
to tackle this problem by framing it as an estimation of the
posterior distribution of the current “run length” 7;, meaning
how likely it is that the measurement at time-step ¢ belongs to
the same data generating process that started r; timesteps ago;
while also obtaining the parameters 7 defining such process.

Intuitively, BOCD continuously monitors a data stream to
identify points where the underlying data distribution changes.
It starts with a prior belief about where changes might occur
and updates this belief by evaluating how well the current data
fits different scenarios of changepoints (segment/run lengths).
At each time step, the algorithm uses the new data to adjust

the likelihood of potential changepoints, incorporating prior
knowledge and observed evidence. The method recursively
updates this distribution to assess the existence of changes
in the UDGP of the current segment.

Formally, the method assumes that the sequence of observa-
tions x1,x2,..., T can be segmented into non-overlapping
intervals, where a changepoint corresponds to the point x;
marking the transition between two adjacent intervals. The set
mgr) contains the points estimated to belong to run r;. Further-
more, the data within each interval p is i.i.d. from P(z|n,),
and the parameters 7,,p = 1,2,... are also i.i.d. Note that
the last assumption is about the parameters of the underlying
distributions describing the data generating process of each
segment. Finally, we should be able to compute the predictive
distribution P(xs11|ry, QZET)) and define a conditional prior on
the changepoint P(r¢|r:—1).

To initialize the algorithm, BOCD considers two scenarios:
(a) the changepoint took place before the initial observation,
then P(ro = 0) = 1, and (b) we are seeing a recent subset of
the data, then P(ro =7) = £ >~ .| Peap(g = t), where Z
is a normalizing constant and Pyap(g) is the multinomial prior
across the changepoints’ domain.

The conditional changepoint prior P(r|r;—_1) is the key for
the algorithm’s performance, since it is defined to have non-
zero mass in two of three cases:

H(ri—1+1) if r, =0,
P(rylri—1) =< 1—H(rg1+1) ifrg=r_1+1, (15)
0 otherwise.

where H (7) is the hazard function [14]. Subsequently, finding
the distribution of the run length P(r;|x;.;), involves recursive
computation over the run length and the observations:

P(Tt,wu) = Z P(rtvrtfhwlzt)
Tt—1

= ZP(Ttvwt‘rtflvwl:tfl)P(rtflzwl:tfl)

Tt—1

= ZP(Tt|7"t—1)P(mt|7’t—1,ﬂ?gr))P(Tt—thm—ﬂ-

Tt—1

(16)

where the predictive distribution P(x¢|ri_1,x1.;) depends
only on the data of the current run z,"’.

P(r¢|e1.+) is updated with each new observation x;, by
first obtaining its predictive probability 7r§r) = P(xt|17tr)),
and then calculating the growth probability (probability that
the run has not ended and we are still observing data from the
same UDGP):

P(ry=mr—1 + Lxiy) =
Plre_y,@rg-)m (1= H(ry_1)).

a7

and changepoint probability (probability that the UDGP has
changed):

P(ry=0,214) = Z P(thh331:t71)7T§T)H(Tt71)- (18)

Tt—1



Figure 5: Training task in the Inspection World Environment
[7]. The region around waypoint #3 is slippery and difficult
to reach.

From which we can obtain,

P(ry, @1.4) _ P(ry, x1.4)
P(x1.) > Plre,@i)’

Finally, after obtaining P(r¢|x1.+) using the latest observation

x;, we update the sufficient statistics of the data generating
process’ model.

P(Tt|$1:t) =

19)

B. Additional Experimental Details

All code was developed using ROS Noetic [43], Python
3.10.11 and PyTorch 2.3.04+cul2l [38]. For the MPPI we
use the MBRL-Lib package [40]. In the real-world, for state
estimation we used FasterLIO with IMU preintegration on
manifold [2, 58] with the Velodyne 16 LiDAR and IMU 3DM-
GXS5-AHRS. We ran all code on-board the Jackal differential
drive robot with an NVIDIA Jetson Orin.

The model M,,, is composed of m = 5 probabilistic neural
networks, with three dense layers with 200 neurons each and
LeakyReLU non-linearities in between. The output is the mean
and log-variance of a Gaussian distribution. Inputs and outputs
are normalized using data statistics computed during training.
At inference time, predictions are de-normalized with respect
to the data statistics obtained during training. We use the Adam
optimizer with default hyperparameters [22]. The batch size is
256 with an early-stopping threshold of 1e-3. The model M,,
starts with randomly initialized parameters and is trained at the
beginning of each episode with the updated replay buffer R.

The sparse-waypoints training task in the Inspection World
simulator is shown in Figure 5.

C. Additional Difficult Terrain Navigation Results

1) Effect of the Hidden State Representation: We use the
Integrated Gradients [51] feature attribution method to verify
that our situationally-aware dynamics model relies on the
different situations to make its predictions, thus influencing the
downstream planner’s control strategies. Figure 6 shows that
on average, 60% of the prediction is explained by the current
situation the robot is in, while the remaining input features

I Situation Feature
W7 Remaining Features

Average Normalized Contribution
o o o o o o o
N w IS wn o N ®

e
b

e
o

Figure 6: Dynamics model input features contributions to the
prediction.

together account for roughly 40%. This clearly highlights that
the model is aware of the situation the robot is experiencing
and modulates its predictions accordingly.

2) Multivariate BOCD: Figure 7 presents the full obser-
vation history during execution of a task by Jackal in the
Inspection world, offering a more detailed view that highlights
how effectively our multivariate extension of BOCD detects
changes in the UDGP of the robot’s dynamics during an
unstructured terrain navigation task.
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Figure 7: Observations received by the proposed situation identification algorithm during a mission in the Inspection World. The
red vertical lines mark the time when we predict a situation change happened. The last row shows the run length probabilities
indicating how likely it is that the robot stayed in the same situation (run length grows) or a situation change happened (run
length becomes zero).
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